When A Bike Sharing Startup Goes Away, What Do You Do With The Bikes?

Part of the detritus of many cities over the last few years has been the ubiquitous bicycles and scooters of the various companies that offer them for hourly hire via a smartphone app. They’re annoying when left randomly on pavements by their users, and they sometimes appear to outnumber riders many times over. In 2018 for many cities outside China they became a little less numerous, as the Chinese bike sharing service Ofo contracted its operations and pulled its distinctive yellow machines from the streets. A couple of years later those Ofo bikes that were sold off or simply abandoned by the company and never recovered are still with us. They can be used if their lock is dismantled, but to do that is to ignore the potential of the lock. [Aladds] has written a firmware for Ofo locks that allows them to be unlocked by a code entered upon its buttons.

Onboard the lock are an nRF51822, 4G radio, and of course the lock mechanism itself. The battery is likely to be flat by now, and though he doesn’t tell us what it is it’s worth our pointing out that similar designs sometimes use hazardous LiSOCl2 chemistry which any hacker should be very cautious with. He gives us full instructions for finding the programming connections for the chip, which can either have its stock firmware downloaded for examination, or be wiped for insertion of the new version. To show the code in action there is also a short YouTube video that we’ve put below the break. Meanwhile we’ve peered inside an Ofo lock before, back in 2018.

Continue reading “When A Bike Sharing Startup Goes Away, What Do You Do With The Bikes?”

Losing A Wheel On Your Commute; 3-Wheelers Vie For The Open Road

We live at an interesting point in time for the technologically minded motor vehicle enthusiast, and we stand on the brink of a major directional shift in  how we imagine a car. Within ten years it’s likely that the electric motor will have moved from an extravagance or a fringe choice to a mainstream one, and a piston engine will be the preserve of an ever smaller niche market.

The Electrameccanica Solo three-wheeler car.
The Electrameccanica Solo three-wheeler car.

Along the way is it possible that the very form factor of an automobile will change, or will cars in decades hence have the same basic shape as those we’re used to? The Canadian company Electrameccanica certainly think so, because they’ve launched a refreshingly different take on commuter transport for one. Their Solo is a three-wheeler car, with two wheels at the front and one trailing wheel at the back configuration. It’s a bold design, but if it’s such an obvious one then why don’t we drive three-wheelers already?

It’s time to examine a few of the properties of a three-wheeler, and along the way visit some of the past attempts at this configuration.

Continue reading “Losing A Wheel On Your Commute; 3-Wheelers Vie For The Open Road”

Aluminium Pucks Fuel Hydrogen Trucks

In the race toward a future free from fossil fuels, hydrogen is rapidly gaining ground. On paper, hydrogen sounds fantastic — it’s clean-burning with zero emissions, the refuel time is much faster than electric, and hydrogen-fueled vehicles can go longer distances between refuels than their outlet-dependent brethren.

The reality is that hydrogen vehicles usually need fuel cells to convert hydrogen and oxygen into electricity. They also need pressurized tanks to store the gases and pumps for refueling, all of which adds weight, takes up space, and increases the explosive potential of the system.

Kurt Koehler has a better idea: make the hydrogen on demand, in the vehicle, using a solid catalyst and a simple chemical reaction. Koehler is the founder of Indiana-based startup AlGalCo — Aluminium Gallium Company. After fourteen years of R&D and five iterations of his system, the idea is really starting to float. Beginning this summer, these pucks are going to power a few trucks in a town just outside of Indianapolis.

Continue reading “Aluminium Pucks Fuel Hydrogen Trucks”

The Next Best Thing To A Cybertruck

While production of the Tesla Cybertruck won’t start production until 2021 (at the earliest), you can always try to build your own. Unless you have a really big spare parts drawer, though, it probably won’t be full sized, but you can at least build a model if you have a shop as well-stocked as [Emiel]. He took some time to build a model cybertruck out of a single sheet of aluminum. (Video, embedded below. You might want to turn on subtitles.)

This project is a great example of the fact that some projects that seem simple on the surface require some specialized tools to get just right. To start, the aluminum sheet was cut with a laser to get into the appropriate shape and include details like windows, and the bending points were marked with an engraver to help the bending process along. The one tool that [Emiel] was missing was a brake, but he got great results with a set of metal bending pliers.

Finishing the model didn’t go particularly smoothly, either. He had planned to braze the metal together, but the heat required kept warping the body panels. The solution was to epoxy it together and sand down the excess, and the results are hopefully stronger than brazing would have been since he added a cloth to the epoxy for extra strength. The windows are made from polycarbonate (and didn’t break during the durability test), and we hope that when [Emiel] is ready to put in a motor he uses one of his custom-built electric motors. Continue reading “The Next Best Thing To A Cybertruck”

Electric Vehicles Continue The Same Wasteful Mistakes That Limit Longevity

A while back, I sat in the newish electric car that was the pride and joy of a friend of mine, and had what was at the time an odd experience. Instead of getting in, turning the key, and driving off, the car instead had to boot up.

The feeling was of a piece of software rather than a piece of hardware, and there was a tangible wait before the start button could be pressed. It was a miracle of technology that could travel smoothly and quietly for all but the longest journeys I could possibly throw at it on relative pennies-worth of electricity, but I hated it. As a technologist and car enthusiast, I should be all over these types of motor vehicles. I live for new technology and I lust after its latest incarnations in many fields including automobiles.

I want my next car to have an electric motor, I want it to push the boundaries of what is capable with a battery and I want it to be an automotive tour de force. The switch to electric cars represents an opportunity like no other to deliver a new type of car that doesn’t carry the baggage of what has gone before, but in that car I saw a future in which they were going badly astray.

I don’t want my next vehicle to be a car like my friend’s one, and to understand why that is the case it’s worth going back a few decades to the cars my parents drove back when when jumpers were goalposts, and the home computer was just a gleam in the eye of a few long-haired outsiders in California.

Continue reading “Electric Vehicles Continue The Same Wasteful Mistakes That Limit Longevity”

Foamboard Makes For A Light Hovercraft

If we are to believe many science fiction movies, one day throngs of people wearing skin-tight silver spandex jumpsuits will be riding around on hovercraft. Hovercraft haven’t really taken the world by storm, but [Fitim-Halimi] built his own model version and shows you how he did it. You can see the little craft moving in the video below.

In theory, a hovercraft is pretty simple, but in practice they are not as easy as they look. For one thing, you need a lot of air to fill the plenum chamber to get lift. That’s usually a noisy operation. The solution? In this case, a hairdryer gave up its motor for the cause. In addition, once floating on a near-frictionless cushion of air, you have to actually move without contacting the ground. Like many real hovercraft, this design uses another fan to push it along. You can see in the video that the designer uses Jedi hand motions to control the vehicle.

Continue reading “Foamboard Makes For A Light Hovercraft”

NASA Readies New Electric X-Plane For First Flight

Since 1951, NASA (known in those pre-space days as NACA) and the United States Air Force have used the “X” designation for experimental aircraft that push technological boundaries. The best known of these vehicles, such as the X-1 and X-15, were used to study flight at extreme altitude and speed. Several fighter jets got their start as X-planes over the decades, and a number of hypersonic scramjet vehicles have flown under the banner. As such, the X-planes are often thought of as the epitome of speed and maneuverability.

So the X-57 Maxwell, NASA’s first piloted X-plane in two decades, might seem like something of a departure from the blistering performance of its predecessors. It’s not going to fly very fast, it won’t be making any high-G turns, and it certainly won’t be clawing its way through the upper atmosphere. The crew’s flight gear won’t even be anything more exotic than a polo and a pair of shorts. As far as cutting-edge experimental aircraft go, the X-57 is about as laid back as it gets.

But like previous X-planes, the Maxwell will one day be looked back on as a technological milestone of its own. Just as the X-1 helped usher in the era of supersonic flight, the X-57 has been developed so engineers can better understand the unique challenges of piloted electric aircraft. Before they can operate in the public airspace, the performance characteristics and limitations of electric planes must be explored in real-world scenarios. The experiments performed with the X-57 will help guide certification programs and government rule making that needs to be in place before such aircraft can operate on a large scale.

Continue reading “NASA Readies New Electric X-Plane For First Flight”