2025 One-Hertz Challenge: The Flip Disc Clock

Do you like buses, or do you just like the flippy-flappy displays they use to show route information? Either way, you’ll probably love the flip-disc clock created by [David Plass].

The build is based around four seven-segment flip disc displays. The modules in question are from Flipo.io. They use a hefty 0.5 amp pulse to create a magnetic field strong enough to flip the discs from one side to the other with coils placed underneath the fluro/black flipdots themselves. The modules are controlled by a Wemos D1, which uses Wi-Fi to query a NTP server to keep accurate time. It then drives the necessary segments to display the current time. The whole thing is assembled in what appears to be some kind of kitchen storage tub.

Notably, the clock flips a couple dots once every second to meet the requirements of our One-Hertz Challenge. This also makes it obvious that the clock is working when it would otherwise be static. However, [David] notes commenting out that part of the code at times, as it can be quite loud!

This clock has got fluro dots, it’s well-executed, and it’s a fine entry to the 2025 One-Hertz Challenge. We’ve also previously explored how these beautiful displays work in detail, too. Meanwhile, if you’re busy repurposing some other kind of mechanical display technology, don’t hesitate to let us know!

 

 

 

 

Two For The Price Of One: BornHack 2024 And 2025 Badges

BornHack is a week-long summer hacker camp in a forest on the Danish island of Fyn, that consistently delivers a very pleasant experience for those prepared to make the journey. This year’s version was the tenth iteration of the camp and it finished a week ago, and having returned exhausted and dried my camping gear after a Biblical rainstorm on the last day, it’s time to take a look at the badges. In case you are surprised by the plural, indeed, this event had not one badge but two. Last year’s badge suffered some logistical issues and arrived too late for the camp, so as a special treat it was there alongside the 2025 badge for holders of BornHack 2024 tickets. So without further ado, it’s time to open the pack for Hackaday and see what fun awaits us. Continue reading “Two For The Price Of One: BornHack 2024 And 2025 Badges”

Raspberry Pi RP2350 A4 Stepping Addresses E9 Current Leakage Bug

The RP2350 MCU in A4 stepping.
The RP2350 MCU in A4 stepping.

When Raspberry Pi’s new RP2350 MCU was released in 2024, it had a slight issue in that its GPIO pins would leak a significant amount of current when a pin is configured as input with the input buffer enabled. Known as erratum 9 (E9), it has now been addressed per the July 29 Product Change Note from Raspberry Pi for the A4 stepping along with a host of other hardware and software issues.

Although the PCN is for stepping A4, it covers both steppings A3 and A4, with the hardware fixes in A3 and only software (bootrom) fixes present in A4, as confirmed by the updated RP2350 datasheet. It tells us that A3 was an internal development stepping, ergo we should only be seeing the A4 stepping in the wild alongside the original defective A2 stepping.

When we first reported on the E9 bug it was still quite unclear what this issue was about, but nearly a month later it was officially defined as an input mode current leakage issue due to an internal pull-up that was too weak. This silicon-level issue has now finally been addressed in the A3 and thus new public A4 stepping.

Although we still have to see whether this is the end of the E9 saga, this should at least offer a way forward to those who wish to use the RP2350 MCU, but who were balking at the workarounds required for E9 such as external pull-downs.

2025 One Hertz Challenge: 4-Function Frequency Counter

Frequency! It’s an important thing to measure, which is why [Jacques Pelletier] built a frequency counter some time ago. The four-function unit is humble, capable, and also an entry into our 2025 One Hertz Challenge!

The build began “a long while ago when electronic parts were still available in local stores,” notes Jacques, dating the project somewhat. The manner of construction, too, is thoroughly old-school. The project case and the sweet red digits are both classic, but so is what’s inside. The counter is based around 4553 BCD counter chips and 4511 decoder ICs. Laced together, the logic both counts frequency in binary-coded decimal and then converts that into the right set of signals to drive the 7-segment displays. Sample time is either 1 Hz or 0.1 Hz, which is derived from an 8MHz oscillator. It can act as a frequency meter, period meter, chronometer, or a basic counter. The whole build is all raw logic chips, there are no microprocessors or microcontrollers involved.

It just goes to show, you can build plenty of useful things without relying on code and RAM and all that nonsense. You just need some CMOS chips and a bucket of smarts to get the job done!

A sine wave and triangle wave on a black background

2025 One Hertz Challenge: Op-Amp Madness

Sometimes, there are too many choices in this world. My benchtop function generator can output a sine, square, or saw wave anywhere from 0.01 Hz up to 60 MHz? Way too many choices. At least, that’s what we suspect [Phil Weasel] was thinking when he built this Analog 1 Hz Sinewave Generator.

Rendering of a PCB
A KiCad rendering of [Phil]’s design
[Phil]’s AWG (which in this case stands for Anything as long as it’s a 1 Hz sine Wave Generator) has another unique feature — it’s built (almost) entirely with op-amps. A lot of op-amps (37, by our count of the initial schematic he posted). His design is similar to a Phased Locked Loop (PLL) and boils down to a triangle wave oscillator. While a 1 Hz triangle wave would absolutely satisfy judges of the One Hertz Challenge, [Phil] had set out to make a sine wave. Using a feedback loop and some shaping/smoothing tricks (and more op-amps), he rounded off the sharp peaks into a nice smooth sine wave.

Sometimes we make things much more complicated than we need to, just to see if we can. This is one of those times. Are there much simpler ways to generate a sine wave? Yes — but not exclusively using op-amps! This entry brings stiff competition to the “Ridiculous” category of the 2025 One Hertz Challenge.

2025 One-Hertz Challenge: A Software-Only AM Radio Transmitter

We’ve been loving the variety of entries to the 2025 One-Hertz Challenge. Many a clock has been entered, to be sure, but also some projects that step well outside simple timekeeping. Case in point, this AM transmitter from [oldradiofixer.]

The software-only transmitter uses an ATTiny85 processor to output an AM radio signal in the broadcast band. It transmits a simple melody that you can tune in on any old radio you might have lying around the house. Achieving this was simple. [oldradiofixer] set up the cheap microcontroller to toggle pin PB0 at 1 MHz to create an RF carrier. Further code then turns the 1MHz carrier on and off at varying rates to play the four notes—G#, A, G#, and E—of the Twilight Zone theme. This is set up to repeat every second—hence, it’s a perfectly valid entry to the 2025 One-Hertz Challenge!

It’s a simple project, but one that demonstrates the basics of AM radio transmission quite well. The microcontroller may not put out a powerful transmission, but it’s funny to think just how easy it is to generate a broadcast AM signal with a bit of software and a length of wire hanging off one pin. Video after the break.

Continue reading “2025 One-Hertz Challenge: A Software-Only AM Radio Transmitter”

A photo of the project on a breadboard in a briefcase.

2025 One Hertz Challenge: Precise Time Ref Via 1 Pulse-Per-Second GPS Signal

Our hacker [Wil Carver] has sent in his submission for the One Hertz Challenge: Precise Time Ref via 1 Pulse-Per-Second GPS Signal.

The Piezo 2940210 10 MHz crystal oscillatorThis GPS Disciplined Oscillator (GPSDO) project uses a Piezo 2940210 10 MHz crystal oscillator which is both oven-controlled (OCXO) and voltage-controlled (VCXO). The GPSDO takes the precision 1 Pulse-Per-Second (PPS) GPS signal and uses it to adjust the 10 MHz crystal oscillator until it repeatedly produces 10,000,000 cycles within one second.

[Wil] had trouble finding all the specs for the 2940210, particularly the EFC sensitivity (S), so after doing some research he did some experiments to fill in the blanks. You can get the gory details in his notes linked above.

Continue reading “2025 One Hertz Challenge: Precise Time Ref Via 1 Pulse-Per-Second GPS Signal”