Hackaday Visits Toronto, Canada

Canada! Just in time for Spring to hit. I went to Toronto to speak at FITC, an arts and technology conference, co-host a Hackaday meetup with HackLab TO, visit the DigiPlaySpace at TIFF, and to check out Globacore’s new digs.

FITC is a conference which celebrates the creativity in technology. Pictured above is Diorama Rama designed by [Christopher Lewis] and [Creative Technologists of Toronto] and built over 4 days by participants at FITC. The buildings are laser cut paper, and participants create a simple circuit using an ATtiny. A message is coded into the chip in ASCII and the buildings blink an individual message back in Morse code, each building blinking a different message. It’s pretty interesting to use a Morse –> ASCII phone app (Morse Tools) to read the messages.

dioramaRama_MorseTools_02
Looking at Diorama Rama with Morse Tools

Hackaday Prize judge [Micah Elizabeth Scott] gave a talk about her work. [Jessica Rosenkrantz] of Nervous System spoke about her company’s process when designing mathematically based objects. She spoke about her 3D printed dress pictured below and how it was made. Amazing! I also got to show off my newly minted Breathe project at FITC.

Kinematics by Nervous System
Kinematics by Nervous System

After FITC ended, HackLab co-hosted a meetup with us. A team from HackLab was a 2014 Hackaday Prize Semifinalist and won $1000 in components with their Retro Populator, a Pick and Place machine retrofit onto a 3D printer. We had beer as well as almond-cream flavored non-alcoholic drinks from the Luma Droid, a drink mixing robot. HackLab is a good-sized hackerspace, with a huge room for a meetup, a full kitchen and vegan dinner served frequently, plus a shop tools room all by itself.

Among the lightning talks, [Pearl Chen] brought her Intel Edison-powered alarm clock that has but one function — to tell her when she is running late. [Johannes van der Horst] brought a USB current monitor that had many of us fascinated for about an hour at the end of the evening, plugging in a phone or a battery just to see the numbers climb. [Eric Boyd] talked about the DIY Bio projects that are going on at HackLab. They are testing meat using PCR to see if it is indeed, beef. Ew.

[Andrew Kilpatrick] of Kilpatrick Audio showed us an older version of his synthesizer before showing us his newest revision, Phenol, which looks pretty slick.

[Hugh Elliot] spoke about a light-photography project. [Leif Bloomquist] spoke about a gaming glove project that Hackaday had previously covered. Leif had a Commodore 64 with him and all the games on it fit into 1 GB! [Nadine Lessio] discussed how many programs claim that you can become an expert in a few hours, but in fact, things are not easy. [Jay Vaidya] showed us an IFTTT hack which controls heaters and AC. [Andy Forest] showed us an impressive interactive model of Ontario’s power system that kids at Steam Labs created.

That was a super fun meetup! Thanks HackLab for hosting. We’ve got a bunch of upcoming meetups and larger events in LA, NYC, Bangalore, San Francisco and Shenzhen. Check our events page for what, where, and when, We’d love to see you.

I stopped by TIFF’s Bell Lightbox to see the DigiPlaySpace exhibit. [Micah Scott] did a collaboration with Ryerson University’s RTA School of Media which welcomes you as you walk in. Note: all photos are lifted directly from TIFF.net’s website.

My final stop on this tour was to visit Globacore’s new offices. We spent a day or so hacking on a VR controller for their newest game called Power Cube. Power Cube is an Oculus Rift experience with a custom game controller holding an accelerometer, a gyroscope and magnetometer that links into the game directly.

See ya Toronto, I can’t wait to come back!

Earth Day: Environmental Sensors

Before you attempt to solve a problem, you must first study the problem. If there’s a problem with the environment, you must therefore study the environment at a scale never seen before. For this year’s Hackaday Prize, there are a lot of projects that aim to do just that. Here are a few of them:

[Pure Engineering]’s C12666 Micro Spectrometer has applications ranging from detecting if fruit is ripe, telling you to put sunscreen on, to detecting oil spills. Like the title says, it’s based on the Hamamatsu C12666MA spectrometer, a very tiny MEMS spectrometer that can sort light by wavelength from 340 to 780nm.

The project is to build a proper breakout board for this spectrometer. The best technologies are enabling technologies, and we can’t wait to see all the cool stuff that’s made with this sensor.

[radu.motisan]’s portable environmental monitor isn’t just one sensor, but an entire suite of them. The design of the project includes toxic and flammable gas sensors, radiation detectors, dust sensors, and radiation detectors packaged together in a neat, convenient package.

[radu] has already seen some success with environmental sensors and The Hackaday Prize; last year, his entry, the uRADMonitor placed in the top fifty for creating a global network of radiation sensors.

 

Earth Day: Terraforming The Earth

In 300 years, New York, London, Tokyo, and just about every major city on the planet will be underwater. Sub-Saharan Africa will extend to the equator. Arizona will get hurricanes. These are huge problems, but luckily there are a few very creative people working to terraform the Earth for this year’s Hackaday Prize.

[Danny] is working to stop desertification, and stop blowing drifts of sand from encroaching on valuable farm land. How does his project aim to do this? There are a few techniques that can mitigate or even stop the expanding deserts, including reforestation, proper water management, and using woodlots and windbreaks just like in the 1930s dust bowl.

With the right tools, these techniques are fairly simple to implement. For that, [Danny] is working on a biodegradable lattice framework that will hold soil in place just like plant roots would. It’s an interesting concept, and we can’t wait to see what kind of prototypes [Danny comes up with.

The Terra Spider takes a different tack. In true post-apocalyptic fashion, the Terra Spider will deploy thousands of robots capable of moving and removing biomatter from the environment. Each of the Terra Spiders is able to monitor the local environment, and a few dozen of these bots connected by a wireless network will be able to address a specific site’s needs to make a landscape the way it should be.

 

Earth Day: Electric Vehicles

Electric vehicles are the wave of the future, whether it’s from sucking too much oil out of the ground, or because of improved battery technology. Most internal combustion engines are unsustainable, and if you’re thinking about the environment – or working on an entry for The Hackaday Prize – an electric vehicle is the way to go.
Here are a few electric vehicle projects that are competing in The Hackaday Prize that show off the possibilities for the electric vehicles of the future.

An Electric Ninja

Motorcycles are extremely efficient already, but if you want a torquey ride with a lot of acceleration, electric is the way to go. [ErikL] is hard at work transforming a 2005 Ninja 250R into an electric vehicle, both to get away from gas-sipping engines and as a really, really cool ride. Interestingly, the battery technology in this bike isn’t that advanced – it’s a lead acid battery, basically, that reduces the complexity of the build.

And They Have Molds To Make Another

Motorcycles aren’t for everybody, but neither are normal, everyday, electronic conversion cars. [MW Motors] is building a car from scratch. The body, the chassis, and the power train are all hand built.

The amazing part of this build is how they created the body. It’s a fiberglass mold that was pulled off of a model carved out of a huge block of foam. There’s a lot of composite work in here, and a lot of work had to happen before digging into the foam; you actually need to choose your accessories, lights, and other bits and bobs before designing the body panels.

While the suspension and a lot of the mechanical parts were taken from a Mazda Miata, the power and drive system are completely custom. Most of the chassis is filled with LiFeMnPO4 batteries, powering four hub motors in each wheel. It’s going to be an amazing car.

Custom, 3D Printed Electric Motors

If you’re designing an electric car, the biggest decision you’re going to make is what motor you’re going to use. This is a simple process: open up a few catalogs and see what manufacturers are offering. There’s another option: building your own motor. [Solenoid] is working on a piece of software that will calculate the specifications of a motor given specific dimensions. It will also generate files for a 3D printed motor given the desired specs. Yes, you’ll still need to wind a few miles of copper onto these parts, but it’s the beginning of completely custom electronic motors.

Hackaday Los Angeles Event: Develop Your Hacking Superpowers

When we get together we like to build stuff, and that’s what has been motivating us as we work toward Hackaday Prize Worldwide: Pasadena. This two-day event held May 9th and 10th in the Los Angeles area is not to be missed. We are presenting a workshop, speakers, hacking, and socializing. Drop what you’re doing and get a ticket for the low-low price of being an awesome person.

On Saturday the ninth, Hackaday opens our doors for the workshop: “Zero to Product”. [Matt Berggren] leads the workshop. He is well known for running the Hardware Developer’s Didactic Galactic up in San Francisco (a meetup that we love to attend). [Matt] comes from a hardware design background and has done it all. He’s been involved in building schematic and PCB tools, been run through the startup gauntlet, and has a ton of hardware experience including everything from FPGA layout to getting that product out the door.

The workshop covers the things you need to consider when producing production-quality, professional-level circuit boards. Don’t be afraid of this, the discussion is approachable for the newcomer as well as the experienced hacker. Of course a PCB does not a product make so the conversation will also move through component selection, enclosures, best practices, and much more.

You Can’t Miss these Talks

 

judge-thumb-White[Elecia White]

[Elecia] is an embedded systems expert and a Hackaday Prize judge in both 2014 and 2015. Elecia will be demonstrating a gadget designed to familiarize engineers with the capabilities of inertial various sensors like accelerometers, gyroscopes, and magnetometers.

[Samy Kamkar]

[Samy] is a privacy and security researcher, has had a number of projects featured on Hackaday. The most notable in our minds is the wireless keyboard sniffer he built into a cellphone charger. He’ll be discussing that build as well as some other projects like his drone army.

We do have a few other speakers and lighting talks lined up but we don’t want to announce until we have final confirmation from those presenters. Please check on the event page for updates.

Show Off Your Hacks and Build More On-Site

 

build
The robot build at Hackady’s 10th Anniversary last October

We have the space, we have the people, add some food and beverage and now you’re talking. On Saturday evening we’ll warp up the talks and workshops, throw on some tunes, and pull out the projects we’ve been working in our spare time.

This casual hang-out is a great time to find answers and advice for that one problem that’s been tripping you up. We’ll make sure there’s something to fill your belly and keep you happy while you think about what you want to hack on the following day.

Sunday is Open Hack Day. Want to work on the concepts you picked up from Saturday’s workshop? Great, we can help with that! We’ll also have hardware development boards on-hand from our Hackaday Prize Sponsors, other random hackable stuff, and of course you may bring your own equipment and get down to business. Anything is fair game but we’re especially excited to see what people are building as their 2015 Hackaday Prize entries!

In case you missed the ticket link, please RSVP now. We’ll see you in May!


The 2015 Hackaday Prize is sponsored by:

We Have A Problem: Health Care Where There Are No Health Care Workers

Hackaday, we have a problem. There are a lot of people on this earth and not a lot of health care workers. Let’s use our skills to help alleviate this problem. What can we do to give medical professionals a wider reach, to bridge the distances between hospital and patient, and make it easier for bystanders to administer lifesaving care.

Scope of the Problem

We’d wager that your most recent and vivid remembrance of a health care worker shortage is the Ebola outbreak in West Africa. The shortage of trained professionals and supplies certainly compounded the situation in the countries worst hit. But it didn’t create the problem. Check out this list of doctors per 1,000 people (sorted lowest-to-highest with 2010 numbers). The three countries hit hardest by the outbreak — Guinea, Liberia, and Sierra Leone — register a whopping 0.0 doctors for every 1000 people. Yeah, that’s years before the outbreak.

Keep scrolling down and you’ll see that this isn’t limited to one geographic location. All over the world there are low numbers, with India and Iraq both at 0.6, and interestingly Cuba and Qatar topping the list at 6.7 and 7.7 respectively.

This isn’t a statistics post so let’s pivot. The point is made that we’re a large world population. What kind of engineering solutions can we wield to help provide everyone with the care they need? Leave your comments below but also considered entering the Hackaday Prize with them. Write down your idea as a Hackaday.io project and tag it 2015 Hackaday Prize.

Proof That We Can Do This

firstmedic-510-aedIt’s safe to say we’ve all seen engineering solve part of this problem already. Over the last decade, Automatic External Defibrillators have become ubiquitous. The life-saving hardware is designed to be used by non-doctors to save someone whose heart rhythms have become irregular. [Chris Nefcy] helped develop AEDs and one ended up saving his life. If that’s not proof that we can change the world with our builds we don’t know what is.

Pull on that thinking cap and jump into this conversation. What can we build? What problems need to be solved right now? Where should each of us be looking to make a difference in the availability of health care in the absence of the trained professionals?


The 2015 Hackaday Prize is sponsored by:

Projects For Solving Big Water Problems

We’re looking for solutions to problems that matter and water waste is high on that list. This week we challenged you to think about Big Water; ideas that could help conserve the water used in agricultural and industrial applications. Take a look at some of the entries, get excited, and start working on your own idea for the 2015 Hackaday Prize.

Windtraps

smart-dewpoint-harvesterThat’s right, windtraps. Like the Fremen of Arrakis there were a few hackers who propose systems to pull moisture from the air.

The RainMaker is targeted for urban farming and explores the possibility of passive systems that water themselves automatically. [Hickss] admits that there are some limitations to the concept. Small systems would have limited ability to collect moisture and a need for direct sunlight in order to be solar powered. However, if you’re growing food we figure direct sunlight was a pre-requisite anyway.

On a bit grander scale is the Smart Dew-Point Water Harvester which is shown off in this diagram. The proof of concept at this point is a desktop system that collects moisture on a small heat-sync. Scroll down to that project’s comments and read about the possibility of building the system underground to take advantage of the naturally colder area.

For us the interesting question is can this be done in conjunction with traditional irrigation? Is a lot of irrigation water lost to evaporation and could reclamation through these means make an impact?

Moisture Sensing

water-sensing-orb-thumbSimple but powerful: only water when the plants need it! Here are several entries focused on sensors that make sure fields are being watered more efficiently.

The Adaptive Watering System focuses on this, seeking to retrofit current setups with sensor pods that make up a mesh network. We found the conjecture about distributing and retrieving these pods using a combine harvester quite interesting.

Going along with the networked concept there is a Moisture Monitoring Mesh Network which proposes individual solar-powered spikes. Much of the info for that project is embodied in the diagram, including a mock-up of how the data could be visualized. One thing we hadn’t spent much time thinking about is that fields may be watered unevenly and a sensor network would be a powerful tool in balancing these systems.

Wrapping up this concept is the Soil Moisture Sensor for Agriculture. [JamesW_001] rendered the image seen above as his concept for the sensor. Toss the orbs throughout the fields and the rings of contacts on the outside make up the sensor while the brains held safely inside report back wirelessly.

Plumbing

solar-water-pumpTwo projects tackled plumbing. The first is the Solar Water Pump seen here. Focused on the developing world, this array provides water for multiple applications, including agricultural irrigation, and can be used for wells or surface water sources.

Once that pump gets the water moving it will be taking a trip through some pipes which are another potential source of waste. When buried pipes leak, how will you know about it? That’s the issue tackled by the Water Pipeline Leak Detection and Location project. When the water pipe is buried, two sets of twisted-pair conductors in permeable sheathing are also buried along with it. These redundant sensors would use Time-Domain Reflectometry (TDR) to detect the location of a short between conductors. We’re a bit fuzzy on how this would detect leaks and not rain or irrigation water but perhaps the pipe/wire pairs would be in their own water-shedding sleeve?

This Week’s Winners

time-for-prize-prizes-week-3

First place this week goes to the Smart Garden and will receive a DSLogic 16-channel Logic Analyzer.

Second place this week goes to Soil Moisture Sensor for Agriculture and will receive an Adafruit Bluefruit Bluetooth Low Energy sniffer.

Third place this week goes to Solar Water Pump and will receive a Hackaday robot head tee.

Next Week’s Theme

We’ll announce next week’s theme a bit later today. Don’t let that stop you from entering any ideas this collection of entries may have inspired. Start your project on Hackaday.io and add the tag 2015HackadayPrize.


The 2015 Hackaday Prize is sponsored by: