Make Your VR Controllers Handle Like Two-Handed Weapons

Wielding things like two-handed swords in VR can be awkward. There’s no sense of grasping a solid object. The controllers (and therefore one’s hands) feel floaty and disconnected from one another, because they are. [Astro VR Gaming] aims to fix this with a DIY attachment they are calling the ARC VR Sword Attachment.

The ARC is a 3D-printed attachment that allows a player to connect two controllers together. They can just as easily be popped apart, which is good because two separate controllers is what one wants most of the time. But for those moments when hefting a spear or swinging a two-handed sword is called for? Stick them together and go wild.

The original design (the first link up above) uses magnets, but an alternate version uses tapered inserts instead, and provides a storage stand. Want to know if the ARC is something you’d like to make for yourself? Watch it in action in the video embedded just under the page break.

VR is an emerging technology with loads of space for experimentation and DIY problem solving. We wish more companies would follow Valve’s example of hacker-friendly hardware design, but even just providing CAD models of your hardware to make attachments easier to design would be a big step forward, and something every hacker would welcome.

Continue reading “Make Your VR Controllers Handle Like Two-Handed Weapons”

3D-Printed RC Car Focuses On Performance Fundamentals

There are a huge number of manufacturers building awesome radio-controlled cars these days. However, sometimes you just have to go your own way. That’s what [snamle] did with this awesome 3D-printed RC car—and the results are impressive.

This build didn’t just aim to build something that looked vaguely car-like and whizzed around on the ground. Instead, it was intended to give [snamle] the opporunity to explore the world of vehicle dynamics—learning about weight distribution, suspension geometry, and so many other factors—and how these all feed into the handling of a vehicle. The RC side of things is all pretty straightforward—transmitter, receiver, servos, motors, and a differential were all off-the-shelf. But the chassis design, the steering, and suspension are all bespoke—designed by [snamle] to create a car with good on-road handling and grip.

It’s a small scale testbed, to be sure. Regardless, there’s no better way to learn about how a vehicle works on a real, physical level—you can’t beat building one with your own two hands and figuring out how it works.

It’s true, we see a lot of 3D printed RC cars around these parts. Many are built with an eye to robotics experimentation or simply as a learning exercise. This one stands out for its focus on handling and performance, and of course that nicely-designed suspension system. Video after the break.

Continue reading “3D-Printed RC Car Focuses On Performance Fundamentals”

Building A 3D-Printed Strandbeest

The Strandbeest is a walking machine, a creation of the celebrated artist Theo Jansen. They can look intimidating in their complexity, but it’s quite possible to build your own. In fact, if you’ve got a 3D-printer, it can be remarkably straightforward, as [Maker 101] demonstrates.

The build relies on an Arduino Uno as the brains. It’s equipped with an L293D motor driver shield to run two DC gear motors which drive the walking assemblies. Power is courtesy of a 3-cell lithium-polymer battery. The chassis, legs, and joints are all 3D-printed, and rather attractively in complimentary colors, we might add.

Controlling this little Strandbeest is simple. [Maker 101] gave the Arduino an infrared sensor which can pick up signals from a simple IR remote control. It can be driven backwards and forwards or turned left and right. What’s more, it looks particularly elegant as it walks—a hallmark of a good Strandbeest design.

Design files are available online for the curious. We love a good Strandbeest build, and some can even be useful, too! Video after the break.
Continue reading “Building A 3D-Printed Strandbeest”

Custom Case Turns Steam Deck Into Portable Workstation

DIY portable computing takes many forms, and doesn’t always require getting down and dirty with custom electronics. [Justinas Jakubovskis]’s Steam Deck Play and Work case demonstrates this with some really smart design features.

It’s primarily a carrying case for Valve’s Steam Deck portable PC gaming console, but the unit also acts as a fold-out workstation with keyboard. Add a wireless mouse to the mix and one can use it much like a mini laptop, or just pull the Steam Deck out and use it in the usual way.

The case is 3D printed and while the model isn’t free (links are in the video description) some of the design features are worth keeping in mind even if you’re not buying. The top clasp, for example, doubles as a cover for the buttons and exhaust vents and the kickstand at the rear covers the cooling intake when closed, and exposes it when deployed. We also really like the use of thick fabric tape lining the inside of the case to support and cushion the Steam Deck itself; it’s an effective and adjustable way to provide a soft place for something to sit.

The case is intended to fit a specific model of keyboard, in this case the Pebble Keys 2 K380s (also available as a combo with a mouse). But if you want to roll your own Steam Deck keyboard and aren’t afraid of some low-level work, check out the Keysheet. Or go deeper and get some guidance on modding the Steam Deck itself.

Continue reading “Custom Case Turns Steam Deck Into Portable Workstation”

Embedding Lenticular Lenses Into 3D Prints

A research project shows that it’s possible to create complex single-piece lenticular objects, or objects that have lenticular lenses built directly into them. The result is a thing whose appearance depends on the viewer’s viewpoint. The object in the image above, for example, is the same object from five different angles.

What’s really neat is that these colorful things have been 3D printed as single objects, no separate lenses or assembly required. Sure, it requires equipment that not just everyone has on their workbench, but we think a clever hacker could put the underlying principles to work all the same.

This lampshade (which was 3D printed as a single object) changes color and displays Good Day or Good Night depending on viewing angle.

The effect is essentially the same as what is sometimes seen in children’s toys and novelties — where a perceived image changes depending on the viewing angle. This principle has been used with a lenticular lens sheet to create a clever lenticular clock, but there’s no need to be limited by what lenses are available off the shelf. We’ve seen a custom 3D printed lenticular lens slapped onto a mobile device to create a 3D screen effect.

Coming back to the research, the objects researchers created go beyond what we’ve seen before in two important ways. First is in using software to aid in designing the object and it’s viewpoints (the plugin for Rhino 3D is available on GitHub), and the second is the scale of the effect. Each lens can be thought of as a pixel whose color depends on the viewing angle, and by 3D printing the lenses, one can fit quite a lot of them onto a surface with a high degree of accuracy.

To make these objects researchers used PolyJet 3D printing, which is essentially UV-cured resin combined with inkjet technology, and can create multi-color objects in a single pass. The lenses are printed clear with a gloss finish, the colors are embedded, and a final hit of sprayed varnish helps with light transmission. It sure beats placing hundreds of little lenses by hand.

Continue reading “Embedding Lenticular Lenses Into 3D Prints”

Atari 65XE In Laptop Form

For better or worse, Atari is no longer a household name in computing, but for a time in the 1980s, it was a huge mover in the industry. They not only produced PCs but also a huge number of video game consoles. Although they were a major contributor to the video game crash of the 1980s, they managed to limp along a few more years afterward and produce some interesting machines in the following years, even though they weren’t ultimately able to compete with Nintendo or Sega. One of those computers from that era was a PC-console hybrid of sorts called the Atari XE, and [Sideburn] was able to turn one into a laptop.

The retro laptop began life as an Arabic PAL version of the 65XE, the PC version of the ubiquitous 65-series computer. A large portion of the computer was reworked, including the removal of the power supply in favor of a rechargeable battery with a 6-hour life. Also among the list of scrapped components was the video and sound connectors as well as the RF modulator, which would have been common for displays at the time, but this laptop is getting a 1920×1080 LCD panel to replace all of that old hardware. A 1MB memory upgrade, new speakers and amp, a WiFi card, and an SD floppy card emulator round out the build.

The final part of the build is assembling it all into a custom 3D printed case, and the resulting laptop that [Sideburn] calls the XE Book is a faithful adaptation of this niche computer into what could have been a laptop we would have seen in the late 80s or early 90s similar to the Toshiba T3200SXC. It matches the original’s footprint and still uses all of the core components, so it’s not too difficult to imagine something like this having existed in the past.

Continue reading “Atari 65XE In Laptop Form”

Camera Slider Uses Repositionable Rail To Do Rotational Moves

You can buy motorized camera sliders off-the-shelf, but they’re pretty costly. Alternatively, you can make one yourself, and it’s not even that hard if you’re kitted out with a 3D printer. [Creative 3D Printing] did just that with a nifty design that adds rotation into the mix. Check it out in the video below.

Why should a camera get all the fun? Try your phone.

The basic slider is built out of 3D-printed components and some good old aluminum extrusion. A small 12-volt motor trucks the camera cart back and forth using a leadscrew. It’s torquey enough and slow enough that there isn’t much need for more advanced control—the motor just does the job. There’s also a limit switch set up to trigger a neat auto-reverse function.

The neat part, though, is the rotational mechanism. A smooth steel rod is attached to the slider’s housing, which can be set up in a straight line or aligned diagonally if desired. In the latter case, it rotates the mounting on the camera cart via a crank, panning the camera as it moves along the slider’s trajectory.

It’s a mechanically sophisticated design and quite unlike most of the camera sliders we feature around these parts.

Continue reading “Camera Slider Uses Repositionable Rail To Do Rotational Moves”