DIY DynDNS With ESP8266 And Dweets

You’re on a home router, and your IP address keeps changing. Instead of paying a little bit extra for a static IP address (and becoming a grownup member of the Internet) there are many services that let you push your current IP out to the rest of the world dynamically. But most of them involve paying money or spending time reading advertisements. Who has either money or time?!

[Alberto Ricci Bitti] cobbled together a few free services and an ESP8266 module to make a device that occasionally pushes its external IP address out to a web-based “dweet” service. The skinny: an ESP8266 gets its external IP address from ipify.org and pushes it by “dweet” to a web-based data store. Freeboard reads the “dweet” and posts the resulting link in a nice format.

Every part of this short chain of software services could be replaced easily enough with anything else. We cobbled together our own similar solution, literally in the previous century, back when we were on dialup. But [Alberto R B]’s solution is quick and easy, and uses no fewer than three (3!) cloud services ending in .io. Add an ESP8266 to the WiFi network that you’d like to expose, and you’re done.

Everyone Loves Faster ESP8266 TFT Libs

Reader [Jasper] writes in with glowing praise for the TFT_eSPI library for the ESP8266 and the various cheap 480×320 TFT displays (ILI9341, ILI9163, ST7735, S6D02A1, etc.) that support SPI mode. It’s a drop-in replacement for the Adafruit GFX and driver libraries, so you don’t need to rework your code to take advantage of it. If you’re looking to drive an LCD screen with an ESP8266 and Arduino, check this out for sure.

As a testbed, [Jasper] ported his Tick Tock Timer project over to the new library. He got a sevenfold increase in draw speed, going from 500 ms to 76 ms. That’s the difference between a refresh that’s visibly slow, and one that looks like it happens instantly. Sweet.

Improving software infrastructure isn’t one of the sexiest or most visible hacks, but it can touch the lives of many hackers. How many projects have we featured with an ESP8266 and a screen? Thanks, [Bodmer] for the good work, and [Jasper] for bringing it to our attention.

Sir, It Appears We’ve Been Jammed!

In a move that would induce ire in Lord Helmet, [Kedar Nimbalkar] has recreated Instructables user spacehun’s version of WiFi jammer that comes with a handful of features certain to frustrate whomever has provoked its wrath.

The jammer is an ESP8266 development board — running some additional custom code — accessed and controlled by a cell phone. From the interface, [Nimbalkar] is able to target a WiFi network and boot all the devices off the network by de-authenticating them. Another method is to flood the airspace with bogus SSIDs to make connecting to a valid network a drawn-out affair.

This kind of signal interruption is almost certainly illegal where you live. It does no permanent damage, but once again raises the existing deauth exploit and SSID loophole. [Nimbalkar]’s purpose in recreating this was for educational purposes and to highlight weaknesses in 802.11 WiFi protocols. The 802.11w standard should alleviate some of our fake deauth woes by using protected frames. Once the device authenticates on a network it will be able to detect fake deauth packets.

We featured a more targeted version of this hack that can be done using a PC — even targeting itself! And more recently there was a version that can target specific devices by jumping on the ACK.

Continue reading “Sir, It Appears We’ve Been Jammed!”

Hacked IoT Switch Gains I2C Super Powers

Economies of scale and mass production bring us tons of stuff for not much money. And sometimes, that stuff is hackable. Case in point: the $5 Sonoff WiFi Smart Switch has an ESP8266 inside but the firmware isn’t very flexible. The device is equipped with the bare minimum 1 MB of SPI flash memory. Even worse, it doesn’t have the I2C ports extra pins exposed so that you can’t just connect up your own sensors and make them much more than just a switch. But that’s why we have soldering irons, right?

Continue reading “Hacked IoT Switch Gains I2C Super Powers”

CP/M 8266

Hands up if you’ve ever used a machine running CP/M. That’s likely these days to only produce an answer from owners of retrocomputers. What was once one of the premier microcomputer operating systems is now an esoteric OS, a piece of abandonware released as open source by the successor company of its developer.

In the 1970s you’d have seen CP/M on a high-end office wordprocessor, and in the 1980s some of the better-specified home computers could run it. And now? Aside from those retrocomputers, how about running CP/M on an ESP8266? From multi-thousand-dollar business system to two-dollar module in four decades, that’s technological progress.

[Matseng] has CP/M 2.2 running in a Z80 emulator on an ESP8266. It gives CP/M 64K of RAM, a generous collection of fifteen 250K floppy drives, and a serial port for communication. Unfortunately it doesn’t have space for the ESP’s party piece: wireless networking, but he’s working on that one too. If you don’t mind only 36K of RAM and one less floppy, that is. All the code can be found on a GitHub repository, so if you fancy a 1970s business desktop computer the size of a postage stamp, you can have a go too.

There’s something gloriously barmy about running a 1970s OS on a two-dollar microcontroller, but if you have to ask why then maybe you just don’t understand. You don’t have to have an ESP8266 though, if you want you can run a bare-metal CP/M on a Raspberry Pi.

Configure ESP8266 Wifi With WiFiManager

There’s no doubt that the ESP8266 has made creating little WiFi widgets pretty easy. However, a lot of projects hard code the access point details into the device. There’s a better way to do it: use the WiFiManager library. [Witnessmenow] has a good tutorial and a two-minute video (which you can see below).

Hard coding is fine if you are just tinkering around. However, if you are going to send your device away (or even take it with you somewhere) you probably don’t want to reprogram it every time you change access points. This problem is even worse if you plan on a commercial product. WiFiManager does what a lot of commercial devices do. It initially looks like an access point. You can connect to it using a phone or other WiFi device. Then you can configure it to join your network by setting the network ID, password, etc.

Continue reading “Configure ESP8266 Wifi With WiFiManager”

Save ESP8266 RAM With PROGMEM

When [sticilface] started using the Arduino IDE to program an ESP8266, he found he was running out of RAM quickly. The culprit? Strings. That’s not surprising. Strings can be long and many strings like prompts and the like don’t ever change. There is a way to tell the compiler you’d like to store data that won’t change in program storage instead of RAM. They still eat up memory, of course, but you have a lot more program storage than you do RAM on a typical device. He posted his results on a Gist.

On the face of it, it is simple enough to define a memory allocation with the PROGMEM keyword. There’s also macros that make things easier and a host of functions for dealing with strings in program space (basically, the standard C library calls with a _P suffix).

Continue reading “Save ESP8266 RAM With PROGMEM”