Building Cameras For The Immersive Future

Thus far, the vast majority of human photographic output has been two-dimensional. 3D displays have come and gone in various forms over the years, but as technology progresses, we’re beginning to see more and more immersive display technologies. Of course, to use these displays requires content, and capturing that content in three dimensions requires special tools and techniques. Kim Pimmel came down to Hackaday Superconference to give us a talk on the current state of the art in advanced AR and VR camera technologies.

[Kim]’s interest in light painting techniques explored volumetric as well as 2D concepts.
Kim has plenty of experience with advanced displays, with an impressive resume in the field. Having worked on Microsoft’s Holo Lens, he now leads Adobe’s Aero project, an AR app aimed at creatives. Kim’s journey began at a young age, first experimenting with his family’s Yashica 35mm camera, where he discovered a love for capturing images. Over the years, he experimented with a wide variety of gear, receiving a Canon DSLR from his wife as a gift, and later tinkering with the Stereorealist 35mm 3D camera. The latter led to Kim’s growing obsession with three-dimensional capture techniques.

Through his work in the field of AR and VR displays, Kim became familiar with the combination of the Ricoh Theta S 360 degree camera and the Oculus Rift headset. This allowed users to essentially sit inside a photo sphere, and see the image around them in three dimensions. While this was compelling, [Kim] noted that a lot of 360 degree content has issues with framing. There’s no way to guide the observer towards the part of the image you want them to see.

Continue reading “Building Cameras For The Immersive Future”

Debugging PCBs With Augmented Reality

Mihir Shah has designed many a PCB in his time. However, when working through the development process, he grew tired of the messy, antiquated methods of communicating design data with his team. Annotating photos is slow and cumbersome, while sending board design files requires everyone to use the same software and be up to speed. Mihir thinks he has a much better solution by the name of InspectAR, it’s an augmented reality platform that lets you see inside the circuit board and beyond which he demoed during the 2019 Hackaday Superconference.

The InspectAR package makes it easy to visualise signals on the board.

The idea of InspectAR is to use augmented reality to help work with and debug electronics. It’s a powerful suite of tools that enable the live overlay of graphics on a video feed of a circuit board, enabling the user to quickly and effectively trace signals, identify components, and get an idea of what’s what. Usable with a smartphone or a webcam, the aim is to improve collaboration and communication between engineers by giving everyone a tool that can easily show them what’s going on, without requiring everyone involved to run a fully-fledged and expensive electronics design package.

The Supercon talk served to demonstrate some of the capabilities of InspectAR with an Arduino Uno. With a few clicks, different pins and signals can be highlighted on the board as Mihir twirls it between his fingers. Using ground as an example, Mihir first highlights the entire signal. This looks a little messy, with the large ground plane making it difficult to see exactly what’s going on. Using an example of needing a point to attach to for an oscilloscope probe, [Mihir] instead switches to pad-only mode, clearly revealing places where the user can find the signal on bare pads on the PCB. This kind of attention to detail shows the strong usability ethos behind the development of InspectAR, and we can already imagine finding it invaluable when working with unfamiliar boards. There’s also the possibility to highlight different components and display metadata — which should make finding assembly errors a cinch. It could also be useful for quickly bringing up datasheets on relevant chips where necessary.

Obviously, the electronic design space is a fragmented one, with plenty of competing software in the market. Whether you’re an Eagle diehard, Altium fanatic, or a KiCad fan, it’s possible to get things working with InspectAR. Mihir and the team are currently operating out of office space courtesy of Autodesk, who saw the value in the project and have supported its early steps. The software is available free for users to try, with several popular boards available to test. As a party piece for Supercon, our very own Hackaday badge is available if you’d like to give it a spin, along with several Arduino boards, too. We can’t wait to see what comes next, and fully expect to end up using InspectAR ourselves when hacking away at a fresh run of boards!

Investigating Retroreflectors With One Heck Of A Microscope

Retroreflectors are interesting materials, so known for their nature of reflecting light back to its source. Examples include street signs, bicycle reflectors, and cat’s eyes, which so hauntingly pierce the night. They’re also used in the Tilt Five tabletop AR system, for holographic gaming. [Adam McCombs] got his hands on a Tilt Five gameboard, and threw it under the microscope to see how it works.

Using the ion beam, a trench was dug around the side of one of the spheres, revealing the interface between the adhesive and the sphere itself.

[Adam] isn’t mucking around, fielding a focused ion beam microscope for the investigation. This scans a beam of galium metal ions across a sample for imaging. With the added kinetic energy of an ion beam versus a more typical electron beam, the sample under the microscope can be ablated as well as imaged. This allows [Adam] to very finally chip away at the surface of the retroreflector to see how it’s made.

The analysis reveals that the retroreflecting spheres are glass, coated in metal. They’re stuck to a surface with an adhesive, which coats the bottom of the spheres, and acts as an etch mask. The metal coating is then removed from the sphere’s surface sticking out above the adhesive layer. This allows light to enter through the transparent part of the sphere, and then bounce off the metal coating back to the source, creating a sheet covered in retroreflectors.

[Adam] does a great job of describing both the microscopy and production techniques involved, before relating it to the fundamentals of the Tilt Five AR technology. It’s not the first time we’ve heard from [Adam] on the topic, and we’re sure it won’t be the last!

Tilt Five: A Fresh Take On Augmented Reality Tabletop Gaming

Tilt Five is an Augmented Reality (AR) system developed by Jeri Ellsworth and a group of other engineers that is aimed at tabletop gaming which is now up on Kickstarter. Though it appears to be a quite capable (and affordable at $299) system based on the Kickstarter campaign, the most remarkable thing about it is probably that it has its roots at Valve. Yes, the ones behind the Half Life games and the Steam games store.

Much of the history of the project has been covered by sites, such as this Verge article from 2013. Back then [Jeri Ellsworth] and [Rick Johnson] were working on project CastAR, which back then looked like a contraption glued onto the top of a pair of shades. When Valve chose to go with Virtual Reality instead of AR, project CastAR began its life outside of Valve, with Valve’s [Gabe] giving [Jeri] and [Rick] his blessing to do whatever they wanted with the project.

What the Tilt Five AR system looked like in its CastAR days. (credit: The Verge)

Six years later Tilt Five is the result of the work put in over those years. Looking more like a pair of protective glasses along with a wand controller that has an uncanny resemblance to a gas lighter for candles and BBQs, it promises a virtual world like one has never seen before. Courtesy of integrated HD projectors that are aimed at the retroreflective surface of the game board.

A big limitation of the system is also its primary marketing feature: by marketing it as for tabletop gaming, the fact that the system requires this game board as the projection surface means that the virtual world cannot exist outside the board, but for a tabetop game (like Dungeons and Dragons), that should hardly be an issue. As for the games themselves, they would run on an external system, with the signal piped into the AR system. Game support for the Tilt Five is still fairly limited, but more titles have been announced.

(Thanks, RandyKC)

Hackaday Links Column Banner

Hackaday Links: August 4, 2019

Is the hacking community facing a HOPEless future? It may well be, if this report from 2600 Magazine is any indication. The biennial “Hackers On Planet Earth” conference is in serious financial jeopardy after the venue that’s hosted it for years, the Hotel Pennsylvania in Manhattan, announced a three-fold increase in price. Organizers are scrambling to save the conference and they’re asking for the community’s help in brainstorming solutions. Hackaday was at HOPE XI in 2016 and HOPE XII in 2018; let’s HOPE we get to see everyone again in 2020.

If you’ve ever been curious about how a 1970s PROM chip worked, Ken Shirriff has you covered. Or uncovered, as he popped the top off a ceramic MMI 5300 DIP to look at the die within. Closeups of the somewhat cockeyed die reveal its secrets – 1,024 tiny fusible links. Programming was a matter of overloading a particular fuse, turning a 1 into a 0 permanently. It’s a fascinating look at how it used to be done, with Ken’s usual attention to detail in the documentation department.

We had a great Hack Chat this week with Mihir Shah from Royal Circuits. Royal is one of the few quick-turn PCB fabs in the USA, and they specialize in lightning-fast turnaround on bare PCBs and assembled boards. He told us all about this fascinating business, and dropped a link to a side project of his. Called DebuggAR, it’s an augmented reality app that runs on a smartphone and overlays component locations, signal traces, pinouts, and more right over a live image of your board. He’s got a beta going now for iPhone users and would love feedback, so check it out.

With all the cool things you can do with LoRa radios, it’s no wonder that wireless hobbyists have taken to pushing the limits on what the technology can do. The world record distance for a LoRa link was an astonishing 702 km (436 miles). That stood for two years until it was topped, twice in the same day. On July 13th, the record was pushed to 741 km, and a mere five hours later to 766 km. All on a scant 25 mW of power.

Linux distro Manjaro made an unconventional choice regarding which office suite to include, and it’s making some users unhappy. It appears that they’ve dumped LibreOffice from the base install, opting instead to include the closed-source FreeOffice. Worse, FreeOffice doesn’t have support for saving .doc and OpenDocument files; potentially leaving LibreOffice users stranded. Paying for an upgrade to SoftMaker’s Office product can fix that, but that’s hardly free-as-in-beer free. It’s kind of like saying the beer is free, but the mug is an upgrade. UPDATE: It looks like the Manjaro team heard all the feedback and are working on a selector so you can install the office suite of your choice.

Tragic news out of New Hampshire, as amateur radio operator Joe Areyzaga (K1JGA) was killed while trying to dismantle an antenna tower. Local news has coverage with no substantial details, however the hams over on r/amateurradio seem to have the inside line on the cause. It appears the legs of the tower had filled with water over the years, rusting them from the inside out. The tower likely appeared solid to Joe and his friend Mike Rancourt (K1EEE) as they started to climb, but the tower buckled at the weak point and collapsed. K1EEE remains in critical condition after the 40′ (12 m) fall, but K1JGA is now a silent key. The tragedy serves as a reminder to everyone who works on towers to take nothing for granted before starting to climb.

And finally, just for fun, feast your eyes on this movie of the ESA’s Rosetta spacecraft as is makes its flyby of comet 67P/Churyumov–Gerasimenko. It’s stitched together from thousands of images and really makes 67P look like a place, not just a streak of light in the night sky.

Open Source Headset With Inside-Out Tracking, Video Passthrough

The folks behind the Atmos Extended Reality (XR) headset want to provide improved accessibility with an open ecosystem, and they aim to do it with a WebVR-capable headset design that is self-contained, 3D-printable, and open-sourced. Their immediate goal is to release a development kit, then refine the design for a wider release.

An early prototype of the open source Atmos Extended Reality headset.

The front of the headset has a camera-based tracking board to provide all the modern goodies like inside-out head and hand tracking as well as the ability to pass through video. The design also provides for a variety of interface methods such as eye tracking and 6 DoF controllers.

With all that, the headset gives users maximum flexibility to experiment with and create different applications while working to keep development simple. A short video showing off the modular design of the HMD and optical assembly is embedded below.

Extended Reality (XR) has emerged as a catch-all term to cover broad combinations of real and virtual elements. On one end of the spectrum are completely virtual elements such as in virtual reality (VR), and towards the other end of the spectrum are things like augmented reality (AR) in which virtual elements are integrated with real ones in varying ratios. With the ability to sense the real world and pass through video from the cameras, developers can choose to integrate as much or as little as they wish.

Terms like XR are a sign that the whole scene is still rapidly changing and it’s fascinating to see how development in this area is still within reach of small developers and individual hackers. The Atmos DK 1 developer kit aims to be released sometime in July, so anyone interested in getting in on the ground floor should read up on how to get involved with the project, which currently points people to their Twitter account (@atmosxr) and invites developers to their Discord server. You can also follow along on their newly published Hackaday.io page.

Continue reading “Open Source Headset With Inside-Out Tracking, Video Passthrough”

Safely Dive Into Your Fears With Virtual Reality

What makes you afraid? Not like jump-scares in movies or the rush of a roller-coaster, but what are your legitimate fears that qualify as phobias? Spiders? Clowns? Blood? Flying? Researchers at The University of Texas at Austin are experimenting with exposure therapy in virtual reality to help people manage their fears. For some phobias, like arachnophobia, the fear of spiders, this seems like a perfect fit. If you are certain that you are safely in a spider-free laboratory wearing a VR headset, and you see a giant spider crawling across your field of vision, the fear may be more manageable than being asked to put your hand into a populated spider tank.

After the experimental therapy, participants were asked to take the spider tank challenge. Subjects who were not shown VR spiders were less enthusiastic about keeping their hands in the tank. This is not definitive proof, but it is a promising start.

High-end VR equipment and homemade rigs are in the budget for many gamers and hackers, and our archives are an indication of how much the cutting-edge crowd loves immersive VR. We have been hacking 360 recording for nearly a decade, long before 360 cameras took their niche in the consumer market. Maybe when this concept is proven out a bit more, implementations will start appearing in our tip lines with hackers who helped their friends get over their fears.

Via IEEE Spectrum.

Photo by Wokandapix.