This Servo Actuated Multimeter Does The Twist

This tip comes our way courtesy of [Elad Orbach], who’s been experimenting with a device that uses a servo to turn the function dial on a multimeter. It’s something you can put together in a few minutes with leftovers from the parts bin, and as you can see in the video after the break, the basic concept seems to be sound enough.

As to finding a practical reason for spinning the switch on your meter with a servo, that’s left largely as an exercise for the reader. [Elad] hints at the possibility of using such a setup to help automate repetitive testing, which we could see being useful especially in combination with a foot pedal that allows you to switch modes without having to put the probes down. The same basic idea could also be helpful as an assistive device for those who have difficulty grasping or limited dexterity.

Whether top of the line or bottom of the barrel, the multimeter is easily the hardware hacker’s most frequently used tool (beyond the screwdriver, perhaps). We’ve seen plenty of projects that try to graft additional features onto this common gadgets, though automation isn’t usually among them.

Continue reading “This Servo Actuated Multimeter Does The Twist”

Automated Cat Feeder Leaves Little To Chance

We often like to say that if something is worth doing, then it’s worth overdoing. This automatic cat feeder built by [krizzli] is a perfect example of the principle. It packs in far more sensors and functions than its simple and sleek outward appearance might suggest, to the point that we think this build might just set the standard for future projects.

The defining feature of the project is a load cell located under the bowl, which allows the device to accurately measure out how much feed is being dispensed by weight. This allows the feeder to do things such as detect jams or send an alert once it runs out of food, as well as easily adjust how much is dispensed according to the animal’s dietary needs. To prevent any curious paws from getting into the machine while it’s doling out the food, the lid will automatically open and close during the filling process, complete with optical sensors to confirm that it moved as expected.

All of the major components of the feeder were printed out on a Prusa i3 MK3S, and [krizzli] says that the feed hopper can be scaled vertically if necessary. Though at the current size, it’s already packing around a week’s worth of food. Of course, this does depend on the particular feline you’re dealing with.

In terms of electronics, the feeder’s primary control comes from an ESP8266 (specifically, the Wemos D1 Mini), though [krizzli] also has a Arduino Pro Mini onboard so there’s a few more GPIO pins to play with. The food is dispensed with a NEMA 17, and a 28-BYJ48 stepper is in charge of moving the lid. A small OLED on the side of the feeder gives some basic information like the time until the next feeding and the dispensed weight, but there’s also a simple API that lets you talk to the device over the network. Being online also means the feeder can pull the time from NTP, so kitty’s mealtime will always be on the dot.

Over the years we’ve seen an incredible array of automatic cat feeders, some of which featuring the sort of in-depth metrics possible when you’ve got on onboard scale. But we can’t help but be impressed with how normal this build looks. If nothing else, of all the feeders we’ve seen, this one is probably the most likely to get cloned and sold commercially. They say it’s the most sincere form of flattery.

DIY Photo Backup In The Field

They say a file isn’t backed up if it isn’t backed up twice. This is easy enough to do if you have access to your computer and a network, but if you’re a photographer you might end up in a place without either of these things and need a way to back up the files you just created. For that you’ll need a specialized photo backup tool which you can easily build yourself.

While commercial offerings are available which back up files locally from a camera’s SD card to another medium, they suffer from a high price. [André]’s solution can be had for a fraction of that cost. Using a Raspberry Pi Zero, a tiny USB hub, and a high capacity jump drive, a photographer can simply plug in an SD card and the Pi will handle the backups with varying levels of automation. The software that [André] made use of is called Little Backup Box written by [Dmitri Popov] and can be used typically as an automatic backup for any other device as well.

This is a great solution to backing up files on the go, whether they’re from a camera or any device that uses an SD card. Removable storage is tiny and easily lost, so it’s good to have a few backups in case the inevitable happens. Raspberry Pis are an ideal solution to data backup, and can even be battery powered if you’re really roughing it for a few days.

Dip Your Toes In The Open Water Of Raspipool

If you’re lucky enough to have a swimming pool, well, you may not feel all that lucky. Pools are great to have on a hot summer day, but keeping them crystal clear and pH-balanced is a deep dive into tedium. Sure, there are existing systems out there. They cost a kiddie pool of cash and are usually limited to particular pool parts. Existing DIY solutions are almost as bad, and so [segalion] is making waves with a dumb, brand-agnostic pool automation system called Raspipool.

Sensors for pH, ORP, and temperature are immersed in pool water flowing through a bypass pipe that runs between the filter and the pump. The basic plan is to control the pumps and sensors with a web-enabled Raspberry Pi, and have the Pi send action and threshold notifications straight to [segalion]’s poolside lounge chair. Each piece is dedicated to a single task, which allows for easy customization and future expansion.

[segalion] is trying to get more people involved so that Raspipool can keep really make a splash. Be sure to check out the project wiki and let him know if you can help or have suggestions.

We’re glad [segalion] is building from the ground up, and doesn’t have to dive into some pre-existing mess of an automation system.

Automatic Cut-Off Saw Takes The Tedium Out Of A Twenty-Minute Job

For [Turbo Conquering Mega Eagle], the question was simple: Do I spend 20 minutes slaving away in front of a bandsaw to cut a bunch of short brass rods into even shorter pieces of brass rod? Or do I spend days designing and building an automatic cutoff saw to do the same job? The answer is obvious.

It’s only at the end of the video below that [TCME] reveals the need for these brass bits: they’re for riveting together the handles of knives he makes and sells. That makes the effort that went into his “Auto Mega Cut-O-Matic” a little easier to swallow, although we still think he ran afoul of this relevant XKCD. The saw is built out of scraps and odd bits using angle iron as a base and an electric die grinder to spin a cut-off wheel. A small gear motor feeds the brass rod down a guide tube until it hits a microswitch stop, which starts the cut cycle. Another motor swivels the saw to make the cut then moves it out of the way so the stock can advance. The impressive thing is that the only control mechanism is a series of microswitches, cams, levers, and springs  – no Arduino needed. Heck, there’s not even a 555, which we find a refreshing change.

Yes, it’s overkill, but he had fun and made something pretty ingenious. [Turbo Conquering Mega Eagle] always has something interesting going on in the shop, and we couldn’t help but notice him using his aluminum-melting tea kettle to make some parts for this build.

Continue reading “Automatic Cut-Off Saw Takes The Tedium Out Of A Twenty-Minute Job”

Autodrop3D Continues Working At 3D Printer Automation

It is an unfortunate fact that 3D printers spend most of their time sitting idle, waiting for a human to remove finished prints or waiting for the next print to start. Hackers see such inefficiency as an open invitation to devise a better way, and we’ve seen several innovative ideas come across these pages. Some have since been abandoned, but others have kept going. At Maker Faire Bay Area 2019 we had the chance to revisit one presented as Autodrop3D.

We saw a much earlier iteration entered in our Hackaday Prize in 2017 and it was fascinating to see how the basic ideas have developed over the past few years. The most visible component of the system is their print ejection system, which has greatly improved in robustness. Because the mechanism modifies the print bed and adds significant mass, it is best suited to delta printers as their print bed remains static. The concept might be adaptable to printers where the print bed only has to move along Z axis, but for now the team stays focused on deltas. There were two implementations on display at Maker Faire: a large one built on a SeeMeCNC RostockMAX v4, and a small one built on a Monoprice Mini Delta.

The ejection system is novel enough by itself, but the hardware is only one part of the end-to-end Autodrop3D vision. Their full software pipeline starts with web-based CAD, to integrated slicing, to print queue management, before G-code is fed to a printer equipped with their ejection system.

We admire inventors who keep working away at turning their vision to reality, and we look forward to seeing what’s new the next time we meet this team. In the meantime, if you like the idea of an automated print ejection mechanism but want more cartoon style, look at this invention from MatterHackers.

Automate The Freight: Amazon’s Robotic Packaging Lines

In the “Automate the Freight” series, I’ve concentrated on stories that reflect my premise that the killer app for self-driving vehicles will not be private passenger cars, but will more likely be the mundane but necessary task of toting things from place to place. The economics of replacing thousands of salary-drawing and benefit-requiring humans in the logistics chain are greatly favored compared to the profits to be made by providing a convenient and safe commuting experience to individuals. Advances made in automating deliveries will eventually trickle down to the consumer market, but it’ll be the freight carriers that drive innovation.

While I’ve concentrated on self-driving freight vehicles, there are other aspects to automating the supply chain that I’ve touched on in this series, from UAV-delivered blood and medical supplies to the potential for automating the last hundred feet of home delivery with curb-to-door robots. But automation of the other end of the supply chain holds a lot of promise too, both for advancing technology and disrupting the entire logistics field. This time around: automated packaging lines, or how the stuff you buy online gets picked and wrapped for shipping without ever being touched by human hands.

Continue reading “Automate The Freight: Amazon’s Robotic Packaging Lines”