3D Printing, Halloween Style

The wonders of 3D printing don’t stop coming. Whether it’s printing tools on the International Space Station, printing houses out of concrete, or just making spare parts for a child’s toy, there’s virtually nothing you can’t get done with the right 3D printer, including spicing up your Halloween decorations.

Not only is this pumpkin a great-looking decoration for the season on its own, but it can also transform into a rather unsettling spider as well for a little bit of traditional Halloween surprise. The print is seven parts, which all snap into place and fold together with a set of ball-and-socket joints. While it doesn’t have any automatic opening and closing from a set of servos, perhaps we will see someone come up with a motion-activated pumpkin spider transformer that will shock all the trick-or-treaters at the end of this month.

It’s not too late to get one for yourself, either. The files are available on Thingiverse or through the project site. And we’ve seen plenty of other Halloween hacks and projects throughout the years too if you’re looking for other ideas, like the recent candy machine game, a rather surprising flying human head, or this terrifying robot.

Printed It: Do More with Lockable Ball And Socket Helping Hands

In one hand you hold the soldering iron, in the other the solder, and in two more hands the parts you’re trying to solder together. Clearly this is a case where helping hands could be useful.

Magnifying glass with helping hands
Magnifying glass with helping hands

Luckily helping hands are easy to make, coolant hoses will do the job at under $10. Attach alligator clips to one end, mount them on some sort of base, and you’re done. Alternatively, you can steal the legs from an “octopus” tripod normally used for cell phones. So why would you 3D print them?

One reason is to take advantage of standardized, open source creativity. Anyone can share a model of their design for all to use as is, or to modify for their needs. A case in point is the ball and socket model which I downloaded for a helping hand. I then drew up and printed a magnifying glass holder with a matching socket, made a variation of the ball and socket joint, and came up with a magnetic holder with matching ball. Let’s takea  look at what worked well and what didn’t.

Continue reading “Printed It: Do More with Lockable Ball And Socket Helping Hands”

Fail of the Week: Good Prosthetic Hand Design Goes Bad

Is this a case of a good design gone wrong in the build phase? Or is this DIY prosthetic arm a poor design from the get-go? Either way, [Will Donaldson] needs some feedback, and Hackaday is just the right place for that.

Up front, we’ll say kudos to [Will] for having the guts to post a build that’s less than successful. And we’ll stipulate that when it comes to fully articulated prosthetic hands, it’s easy to fail. His design is ambitious, with an opposable thumb, fingers with three phalanges each, a ball and socket wrist, and internal servos driving everything. It’s also aesthetically pleasing, with a little bit of an I, Robot meets Stormtrooper look.

But [Will]’s build was plagued with print problems from the start, possibly due to the complex nature of the bosses and guides within the palm for all the finger servos. Bad prints led to creaky joints and broken servos. The servos themselves were a source of consternation, modified as they were for continuous rotation and broken apart for remotely mounting their pots in the hand’s knuckles. The video below relates the tale of woe.

There’s a lot to admire with [Will]’s build, but it certainly still has its issues. He’s almost to the point of other more successful DIY hand builds but just needs a little help. What say you in the comments line? Continue reading “Fail of the Week: Good Prosthetic Hand Design Goes Bad”