The Real Science (Not Armchair Science) Of Consciousness

Among brain researchers there’s a truism that says the reason people underestimate how much unconscious processing goes on in your brain is because you’re not conscious of it. And while there is a lot of unconscious processing, the truism also points out a duality: your brain does both processing that leads to consciousness and processing that does not. As you’ll see below, this duality has opened up a scientific approach to studying consciousness.

Are Subjective Results Scientific?

Researcher checking fMRI images.
Checking fMRI images.

In science we’re used to empirical test results, measurements made in a way that are verifiable, a reading from a calibrated meter where that reading can be made again and again by different people. But what if all you have to go on is what a person says they are experiencing, a subjective observation? That doesn’t sound very scientific.

That lack of non-subjective evidence is a big part of what stalled scientific research into consciousness for many years. But consciousness is unique. While we have measuring tools for observing brain activity, how do you know whether that activity is contributing to a conscious experience or is unconscious? The only way is to ask the person whose brain you’re measuring. Are they conscious of an image being presented to them? If not, then it’s being processed unconsciously. You have to ask them, and their response is, naturally, subjective.

Skepticism about subjective results along with a lack of tools, held back scientific research into consciousness for many years. It was taboo to even use the C-word until the 1980s when researchers decided that subjective results were okay. Since then, here’s been a great deal of scientific research into consciousness and this then is a sampling of that research. And as you’ll see, it’s even saved a life or two.

Continue reading “The Real Science (Not Armchair Science) Of Consciousness”

Magic In VR That Depends On Your Actual State Of Mind

[Cangar]’s excitement is palpable in his release of a working brain-computer interface (BCI) mod for Skyrim VR, in which the magic system in the game is modified so that spell effectiveness is significantly boosted when the player is in a focused mental state. [Cangar] isn’t just messing around, either. He’s a neuroscientist whose research focuses on assessing mental states during task performance. Luckily for us, he’s also an enthusiastic VR gamer, and this project of his has several interesting aspects that he’s happy to show off in a couple of videos.

User wearing VR headset
The Muse 2 fits under the VR headset easily.

It all starts with the player wearing a Muse 2 meditation device; a type of passive, off-the-shelf electroencephalography (EEG) unit aimed primarily at guiding a user towards better relaxation and focus. [Cangar] reads data using the Brainflow library and processes it into a final value on a scale between “not focused” and “focused”. [Cangar] makes a point of explaining that his system ultimately has the goal of modeling the player’s state of mind, which is different from modeling just the brain activity. As such, motion data is considered as well, and holding still confers a small bonus to the process.

How is this data actually used in the game? In VR, this “focus” value is shown as a small bar on the player’s wrist, and spell effectiveness (for example, damage for attack spells) scales along with the size of the bar. When the bar is full a player would be very powerful, with spells doing double damage. If the bar is empty, spells will do little to no damage.

[Cangar] demonstrates the mod in two videos (both embedded below), but you won’t see him blasting enemies with fireballs. Presumably, VR gamers already know what that looks like, so what he does instead is explain how the system looks and works (first video, cued to 4:12), and in the second, he video demonstrates how the focus meter changes depending on his activity and mental state.

The results look exciting, and the potential uses of a system like this are pretty interesting to think about. Taking a few deep breaths and calming one’s body and mind before launching a magical attack will have a tangible effect in the world, and because things rarely go according to plan, there is also a clear survival benefit to learning to focus while under pressure. But if a brain monitor isn’t your cup of tea, maybe consider a leisurely bike ride through Skyrim, instead.

Continue reading “Magic In VR That Depends On Your Actual State Of Mind”

Plot And Visualise Brain Data In An Artwork

One of the most interesting streams through which we receive new projects to write about here at Hackaday comes from the intersection between technologists and artists. Those artists who straddle both disciplines bring creativity that those of us without their backgrounds can only dream of. The artist [Rosa Francesca] produced a piece called Cinematica, in which she monitored her brain waves with an EEG and from them produced on-paper visualizations with a pen plotter.

The hardware in use is an Interaxon Muse EEG headband read through the Muse Monitor app, and some code to drive an Evil Mad Scientist AxiDraw V3 plotter via its serial port. The write-up goes in some depth into the different types of brain waves, explaining her choice of monitoring gamma and theta waves for her source data. The result is a series of repeating shapes that vary with the brain waves of the wearer, creating drawings that are both pleasing and unique.

If you’re interested by the Muse headset used in this artwork, you might find a teardown we covered a few years ago to be of interest. And if you’re tempted by the plotter, you can always try making your own.

Thanks, @tanurai for the tip!

Your New Winter Hat Should Express Your Brain Waves Like A Neon Sign… Just Saying

We’ve seen a few cool hacks for mainstream commercial EEG headsets, but these are all a tad spendy for leisurely play or experimentation. The illumino project by [io] however, has a relatively short and affordable list of materials for creating your own EEG sensor. It’s even built into a beanie that maps your mental status to a colorful LED pompom! Now that winter is around the corner, this project is perfect for those of us who want to try on the mad scientist’s hat and look awesome while we’re wearing it.

How does all the neuro-magic happen? At the heart of [io’s] EEG project is a retired Thinkgear ASIC PC board by Neurosky. It comes loaded with fancy algorithms which amplify and process the different types of noise coming from the surface of our brain. A few small electrodes made from sheets of copper and placed in contact with the forehead are responsible for picking up this noise. The bridge between the electrodes and the Thinkgear is an arduino running the illumino project code. For [io’s] tutorial, a Tinylilly Arduino is used to mesh with the wearable medium, since all of these parts are concealed in the folded brim of the beanie.

eegBeanie3

In addition, a neat processing sketch is included which illustrates the alpha, beta, gamma, and other wave types associated with brain activity as a morphing ball of changing size and color. This offers a nice visual sense of what the Neurosky is actually reading.

If all of your hats lack pompoms and you can’t find one out in the ether that comes equipped, fear not… there is even a side tutorial on how to make a proper puff-ball from yarn. Sporting glowing headwear might be a little ostentatious for some of us, but the circuit in this project by itself is a neat point of departure for those who want to poke around at the EEG technology. Details and code can be found on the illumino Instructable.

Thanks Zack, for showing us this neat tutorial!

Continue reading “Your New Winter Hat Should Express Your Brain Waves Like A Neon Sign… Just Saying”

Thumbs-Down Songs On Pandora With Your Mind

[Steven] likes music. Like many of us, he uses Pandora to enjoy the familiar and to discover new music. Now, Pandora means well, but she gets it wrong sometimes. [Steven] has had a Mindwave Mobile EEG headset lying around for a while and decided to put it to good use. With the aid of a Raspberry Pi and a bluetooth module, he built a brainwave-controlled Pandora track advancing system.

The idea is to recognize that you dislike a song based on your brainwaves. The Mindwave gives data for many different brainwaves as well as approximating your attention and meditation levels. Since [Steven] isn’t well-versed in brainwavery, he used Bayesian estimation to generate two multivariate Gaussian models. One represents good music, and the other represents bad music. The resulting algorithm is about 70% accurate, so [Steven]’s Python script waits for four “bad music” estimations in a row before advancing the track.

[Steven] streams Pandora through pianobar and has a modified version of the control-pianobar script in his GitHub repo His script will also alert you if the headset isn’t getting good skin contact, a variable that the Mindwave reports on a scale of 0 to 200.

Stick around for a demo of [Steven] controlling Pandora with his mind. If you don’t have an EEG headset, you can still control Pandora with a Pi, pianobar, and some nice clicky buttons.

Continue reading “Thumbs-Down Songs On Pandora With Your Mind”

Tug Of War… With Your Mind, Man!

Challenge your friends to a little mental Tug of War thanks to the Omaha Maker Group’s Red Bull Creation contest entry. The power struggle is all in your mind, and can only be won if you’re able to concentrate deeply and quickly. The headsets worn by each competitor monitor brain waves over a ten second window. If you concentrate more deeply than your opponent they’ll get a squirt of water in the face. If no one is concentrating well the contest is a draw the measurements start again. The screenshot above was taken from the test footage found after the break.

Hardware details are scant on this one. Obviously the Bullduino is the centerpiece of the build, taking readings from the headsets. A motor moves the water nozzle along a slit cut in the top of the sphere.  Progress during the 10-second window is displayed by that nozzle, which starts in the center yellow ‘safe’ zone and moves to one side or another to enter the green ‘kill’ zone.

Continue reading “Tug Of War… With Your Mind, Man!”

Mind Control Via Serial Port

brain-control-via-serial-port

[Zibri] found a very simple method for using brain waves as a controller via a DB9 serial port. He’s using Uncle Milton’s Force Trainer which we saw yesterday in the brain controlled Arduino. In that project the Arduino tapped into the LEDs and interfaced those signals with a computer via USB. This time the connection was made using an RS-232 transceiver to pass data from the programming header inside of the toy’s base unit to a computer over the serial port. Tapping into the programming header has a lot more potential and should be more reliable than sniffing logic out of LED connections. [Zibri] has written an application to display the received data but it doesn’t look like he’s made the code available for download.

Apparently he tipped us off about a week ago. We recall seeing this submission but as you can tell it’s a little bit light on the detail. So if you want your tips to be at the front of the line, make sure you do what you can to fill us in on all the details of your project. At our request [Zibri] provided a picture of the PCB from the Force Trainer’s base unit. See it after the break. Continue reading “Mind Control Via Serial Port”