Choosing Cell Modems: The Drama Queen Of Hardware Design

So you went to a tradeshow and heard about this cool new idea called the Internet Of Things; now it’s time to build an IoT product of your own. You know that to be IoT, your Widget D’lux® has to have a network connection but which to choose?

You could use WiFi or Bluetooth but that would be gauche. Maybe LoRaWAN? All the cool kids are using LoRa for medium or long range wireless these days, but that still requires a base station and Widget D’lux® will be a worldwide phenomenon. Or at least a phenomenon past your bedroom walls. And you know how much user’s hate setting things up. So a cell modem it is! But what do you have to do to legally include one in your product? Well that’s a little complicated.

Continue reading “Choosing Cell Modems: The Drama Queen Of Hardware Design”

The New, Improved Open Hardware Certification Program

Today at the Open Hardware Summit at MIT, OSHWA, the Open Source Hardware Association has announced a huge revision to the Open Hardware certification process. The goal here is to design a better platform for creating Open Hardware.

While all hardware already certified as Open Hardware will remain Open Hardware, this revamp of the ‘hub’ of the certification process is greatly improved. There’s a new website. There are learning modules telling everyone what it means to be Open Source hardware. There are community examples — real-life walk-throughs of projects that have already been created. There’s a streamlined certification process, and an improved listing of Open Hardware projects.

But Why A Certification Program?

While Open Source in the world of software is easily defined, it is effectively a hack of copyright law; all software is closed by default, and an Open Source software license is merely that; a license for anyone to use it, with the various restrictions and philosophical battles. Hardware, on the other hand, is big-O Open by default. The code used to program an FPGA is covered by copyright, but the circuit itself isn’t. The firmware on your Arduino project is covered by Open Source software licenses, but the physical implementation of your Fritzing picture isn’t.

In the absence of a legal framework to truly make an Open Hardware license work, the only other option is a certification program. The current Open Source Hardware certification program launched in 2016, and has since seen hundreds of projects certified from dozens of countries. It is, by any measure, a remarkable success. The people who make hardware are certifying that their work complies with community-set standards, and all of these projects are registered.

The New, Improved Interface for the Certification Program

While the core of the Open Hardware Certification program hasn’t changed, the user interface — the ‘killer app’ of a directory of Open Hardware projects — has. According to the press release put out by OSHWA ahead of the announcement, “The revamped website consolidates a broad range of information about open source hardware onto a single site. To maximize comprehension for people pursuing certification for their own hardware, important documentation and licensing concepts are illustrated with specific existing examples from the registry. An improved directory and search function makes it easy to find hardware that matches a broad range of criteria.”

Compared to last week’s version of OSHWA’s website, this is a huge improvement. Now, you can easily find information about what it means to make Open Hardware. The complete directory of Open Hardware projects isn’t just a spreadsheet on a webpage anymore, you can actually search for projects now. This is a huge improvement to the Open Hardware certification program, and we can’t wait to see how this new platform will be used.

You can check out the rest of the Open Hardware Summit over on the livestream.

Making The Case For Open Source Medical Devices

Engineering for medical, automotive, and aerospace is highly regulated. It’s not difficult to see why: lives are often at stake when devices in these fields fail. The cost of certifying and working within established regulations is not insignificant and this is likely the main reason we don’t see a lot of work on Open Hardware in these areas.

Ashwin K. Whitchurch wants to change this and see the introduction of simple but important Open Source medical devices for those who will benefit the most from them. His talk at the Hackaday Superconference explores the possible benefits of Open Medical devices and the challenges that need to be solved for success.

Continue reading “Making The Case For Open Source Medical Devices”

FCC Fines Drone FPV Maker For Using Radio Spectrum

If you listen to the radio bands in the United States, you might wonder if anyone at the FCC is paying attention, or if they are too busy selling spectrum and regulating the Internet. Apparently however, they are watching some things. The commission just levied a $180,000 fine on a company in Florida for selling audio/visual transmitters that use the ham bands as well as other frequencies.

The FCC charged that Lumenier Holdco LLC (formerly known as FPV Manuals LLC) was marketing uncertified transmitters some of which exceeded the 1-W power limit for ham transmitters used on model craft.

Continue reading “FCC Fines Drone FPV Maker For Using Radio Spectrum”

Tindie Chat: All About Certifications

The chat functionality on Hackaday.io is quickly turning into the nexus of all things awesome. This Tuesday, February 28th, everyone’s favorite robotic dog is talking certifications. Everything from FCC to UL to OSH to CE and the other CE is on the table. If you want to build hardware, and especially if you want to build a product, this is the talk for you. Join us for the next Tindie Chat on Hackaday.io.

Every month or so, we round up Tindie sellers, buyers, and the Tindie curious to talk about the issues facing hardware creators. We meet up in the Tindie Dog Park to talk about all things Tindie and hardware creation. If you want to know anything about certifications — whether you’re selling on Tindie or not — this is the virtual meetup for you.

This chat is going down Tuesday, February 28th at 11:00 AM PST (or 19:00 GMT). Want to join in the chat? Head on over to the Tindie Dog Park and request to join the project. Then, just head over to the chat by clicking on the ‘Team Messaging’ button. If you have a question, we have a spreadsheet.

There are a lot of experienced product designers over on Tindie, and this is a prime opportunity to learn some of the hard lessons these Tindie sellers have already experienced. Don’t miss this, it’s going to be great.

The People, Talks, And Swag Of Open Hardware Summit

Friday was the 2016 Open Hardware Summit, a yearly gathering of people who believe in the power of open design. The use of the term “summit” rather than “conference” is telling. This gathering brings together a critical mass of people running hardware companies that adhere to the ideal of “open”, but this isn’t at the exclusion of anyone — all are welcome to attend. Hackaday has built the world’s largest repository of Open Hardware projects. We didn’t just want to be there — We sponsored, sent a team of people, and thoroughly enjoyed ourselves in the process.

Join me after the break for a look at the talks, a walk through the swag bags, and a feel for what this wonderful day held.

Continue reading “The People, Talks, And Swag Of Open Hardware Summit”

Is Your Cat 6 Ethernet Cable Cat 6? Probably Not.

Though we’ve never used their cables, [Blue Jeans Cable] out of Seattle, WA sure does seem to take the black art of cable manufacture seriously. When they read the Cat 6 specification, they knew they couldn’t just keep building the cables the way they used to. So they did some research and purchased a Fluke certification tester for a measly 12,000 US dollars. While they were purchasing the device, they ran across an interesting tidbit in the fluke knowledge base. Fluke said that 80% of the consumer Cat 6 cables they tested didn’t begin to meet the Cat 6 specification.

This is the part where [Blue Jeans Cable] earns our respect; like good scientists, they set out to replicate Fluke’s results. Sure enough, 80% of the Cat 6 cables they tested from big box stores etc. failed the specification. More surprising, many of them didn’t even pass the Cat 5e specification. [Blue Jeans Cable] asserts that this is possible because the Ethernet cable specification is policed via the honor system, allowing manufacturers to be fairly brazen about what they label as Cat 6.