An animated GIF of Engineer Bo's Precision Bluetooth Scroll Wheel wirelessly, and effortlessly scrolling down the Hack A Day blog with a single finger

Doomscroll Precisely, And Wirelessly

Around here, we love it when someone identifies a need and creates their own solution. In this case, [Engineer Bo] was tired of endless and imprecise scrolling with a mouse wheel. No off-the-shelf solutions were found, and other DIY projects either just used hacked mice scroll wheels, customer electronics with low-res hardware encoders, or featured high-res encoders that were down-sampled to low-resolution. A custom build was clearly required.

A photo of a 3D printed yellow plastic form with red marker drawn on the top of the support material and used in Engineer Bo's Precision Bluetooth Scroll Wheel

We loved seeing hacks along the whole process by [Engineer Bo], working with components on hand, pairing sensors to microcontrollers to HID settings, 3D printing forms to test ergonomics, and finishing the prototype device. When 3D printing, [Engineer Bo] inserted a pause after support material to allow drawing a layer of permanent marker ink that acts as a release agent that can later be cleaned with rubbing alcohol. 

We also liked the detail of a single hole inside used to install each of the three screws that secure the knob to the base. While a chisel and UV-curing resin cleaned up some larger issues with the print, more finishing was required. For a project within a project, [Engineer Bo] then threw together a mini lathe with 3D printed and RC parts to make sanding easy.

Scroll down with your clunky device to see the video that illustrates the precision with a graphic of a 0.09° rotation and is filled with hacky nuggets. See how the electronics were selected and the circuit designed and programmed, the use of PCBWay’s CNC machining in addition to board assembly services, and how to deal with bearings that spin too freely. [Engineer Bo] teases that a future version might use a larger bearing for less wobble and an anti-slip coating on the base. Will the board files and 3D models be released, too? Will these be sold as finished products or kits? Will those unused LED drivers be utilized in an upcoming version? We can’t wait to see what’s next for this project.

Continue reading “Doomscroll Precisely, And Wirelessly”

An IPhone Case Study

Way back in 2008, Apple unveiled the first unibody Macbook with a chassis milled out of a single block of aluminum. Before that, essentially all laptops, including those from Apple, were flimsy plastic screwed together haphazardly on various frames. The unibody construction, on the other hand, finally showed that it was possible to make laptops that were both lightweight and sturdy. Apple eventually began producing iPhones with this same design style, and with the right tools and a very accurate set of calipers it’s possible to not only piece together the required hardware to build an iPhone from the ground up but also build a custom chassis for it entirely out of metal as well.

The first part of the project that [Scotty] from [Strange Parts] needed to tackle was actually getting measurements of the internals. Calipers were not getting the entire job done so he used a flatbed scanner to take an image of the case, then milled off a layer and repeated the scan. From there he could start testing out his design. After an uncountable number of prototypes, going back to the CAD model and then back to the mill, he eventually settles into a design but not before breaking an iPhone’s worth of bits along the way. Particularly difficult are the recessed areas inside the phone, but eventually he’s able to get those hollowed out, all the screw holes tapped, and then all the parts needed to get a working iPhone set up inside this case.

[Scotty] has garnered some fame not just for his incredible skills at the precision mill, but by demonstrating in incredible detail how smartphones can be user-serviceable or even built from scratch. They certainly require more finesse than assembling an ATX desktop and can require some more specialized tools, but in the end they’re computers like any other. For the most part.

Continue reading “An IPhone Case Study”

Rolling Your Own Ball Screws

We’ve got mixed feelings about a new video from [AndysMachines] that details how he makes custom ball screws. On the one hand, there’s almost zero chance that we’ll ever have an opportunity to put this information to practical use. But on the other hand, the video gives a fantastic look at the inner workings and design considerations for ball screws, which is worth the price of admission alone

The story behind these ball screws is that [Andy] is apparently in cahoots with SkyNet and is building a T-800 Terminator of his own. Whatever, we don’t judge, but the build requires a short-throw linear drive mechanism that can be back-driven, specs that argue for a ball screw. [Andy] goes through the challenges of building such a thing, which mainly involve creating threads with a deep profile and wide pitch. The screw itself wasn’t too hard to cut, although there were some interesting practical details in the thread profile that we’d never heard of before.

The mating nut was another. Rather than try to cut deep internal threads, [Andy] took a sort of “open-face sandwich” approach, creating half-nuts in a single piece of brass using a CNC machine and a ball-nose mill. The threads were completed by cutting the two halves apart and bolting them together — very clever! [Andy] also showed how the balls recirculate in the nut through channels cut into one of the half-nuts.

Whether the results were worth the effort is up to [Andy], but we were just glad to be along for the ride. And if you want a little more detail on lead screws and ball screws, we’ve got just the article for that.

Continue reading “Rolling Your Own Ball Screws”

Simple Pen Plotter Rolls On The Table

Pen plotters are popular builds amongst DIY CNC enthusiasts. They’re a great way to learn the fundamentals of motion control and make something useful along the way. In that vein, [Maker101] has created a neat barebones plotter for tabletop use. 

The basic design relies on familiar components. It uses a pair of MGN15 linear rails as the basis of the motion platform, along with NEMA 17 stepper motors to run the X and Y axes. These are assembled with the aid of 3D-printed parts that bring the whole frame together, along with a pen lifter operated with a hobby servo.

The neat thing about the design is that the barebones machine is designed to sit upon an existing tabletop. This eliminates the need to integrate a large flat work surface into the plotter itself. Instead, the X axis just runs along whatever surface you place it on, rolling on a small wheel. It’s likely not ideal for accuracy or performance; we could see the machine itself skating around if run too fast. For a lightweight barebones plotter, though, it works well enough.

If you dig building plotters, you might like to step up to something more laser-y in future. Video after the break.

Continue reading “Simple Pen Plotter Rolls On The Table”

A large silver cone attached to a black hemisphere floats over a piece of sheet metal held in a metal frame. The metal has what appears to be machine grease on it to aid in the forming process.

CNC Metal Forming

Forming complex shapes in metal sheets is still a laborious process, especially if you aren’t needing more than a couple parts so stamping doesn’t make sense. That may change with Digital Sheet Forming.

While this video is basically an ad for one vendor’s approach, it gives a good set of examples of what the technique can achieve. The high pressure mechanism of the machine presses the metal layer by layer down against a silicone backing to form what you’ve designed, in this case, the nose cone for a Tucker Carioca.

Some people will decry it killing the metal forming industry, but as [Rob Ida] says in the video, it will allow metal formers to become more efficient at the work they do by taking out the tedium and letting them focus on the parts of the process requiring the most skill. Anyone who’s done any work with a 3D printer or CNC mill will know that sending a file to a machine is only one small part of the process.

We’re anxious to see this technology make its way to the makerspace and home shop. If you want to do some sheet metal forming now, why not try hydroforming?

Continue reading “CNC Metal Forming”

A series of wooden rectangles are arranged vertically around the edges of a dark wooden base, reminiscent of a very tall radial fan. Light glows from the base up the slots between the vanes. a cord runs from behind the dark base to a small puck of the same color. The setup sits on a light grey table in front of a light grey wall.

A Beautiful Lamp-Inspired PC Case

Sometimes you see something super cool and think of how it would be really neat if applied in a totally different context. [MXC Builds] saw an awesome lamp from [karacreates], but decided it would be better as a PC case.

We love seeing how different techniques can be used in conjunction to make something that no one method could produce on its own, and for this build, we see [MXC Builds] use 3D printing, laser cutting, CNC, sewing, soldering, and traditional woodworking techniques.

A large part of the video is spent on the CNC process for the walnut base and power button enclosure for the build. As with any project, there are a few places requiring some creative use of the tools on hand, like the walnut piece for the base being too tall for the machine’s usual z-calibration puck or any of [MXC Builds]’s bits to do in one pass, and it’s always interesting to see how other makers solve these issues.

If you’re looking for other beautiful casemods, how about a transparent PS2 or this Art Deco number? Before you go, may we bend your ear about how PC Cases are Still Stuck in the Dark Ages?

Continue reading “A Beautiful Lamp-Inspired PC Case”

Unusual Tool Gets An Unusual Repair

In today’s value-engineered world, getting a decade of service out of a cordless tool is pretty impressive. By that point you’ve probably gotten your original investment back, and if the tool gives up the ghost, well, that’s what the e-waste bin is for. Not everyone likes to give up so easily, though, which results in clever repairs like the one that brought this cordless driver back to life.

The Black & Decker “Gyrodriver,” an interesting tool that is controlled with a twist of the wrist rather than the push of a button, worked well for [Petteri Aimonen] right up until the main planetary gear train started slipping thanks to stripped teeth on the plastic ring gear. Careful measurements of one of the planetary gears to determine parameters like the pitch and pressure angle of the teeth, along with the tooth count on both the planet gear and the stripped ring.

Here, most of us would have just 3D printed a replacement ring gear, but [Petteri] went a different way. He mentally rolled the ring gear out, envisioning it as a rack gear. To fabricate it, he simply ran a 60° V-bit across a sheet of steel plate, creating 56 parallel grooves with the correct pitch. Wrapping the grooved sheet around a round form created the ring gear while simultaneously closing the angle between teeth enough to match the measured 55° tooth angle in the original. [Petteri] says he soldered the two ends together to form the ring; it looks more like a weld in the photos, but whatever it was, the driver worked well after the old plastic teeth were milled out and the new ring gear was glued in place.

We think this is a really clever way to make gears, which seems like it would work well for both internal and external teeth. There are other ways to do it, of course, but this is one tip we’ll file away for a rainy day.