RGB Sensor’s New Job: Cryptocurrency Trade Advisor

[XenonJohn] dabbles in cryptocurrency trading, and when he saw an opportunity to buy an RGB color sensor, his immediate thought — which he admitted to us would probably not be the immediate thought of most normal people — was that he could point it to his laptop screen and have it analyze the ratio of green (buy) orders to red (sell) orders being made for crypto trading. In theory, if at a given moment there are more people looking to buy than there are people looking to sell, the value of a commodity could be expected to go up slightly in the short-term. The reverse is true if a lot of sell orders coming in relative to buy orders. Having this information and possibly acting on it could be useful, but then again it might not. Either way, as far as out-of-left-field project ideas go, promoting an RGB color sensor to Cryptocurrency Trading Advisor is a pretty good one.

Since the RGB sensor only sees what is directly in front of it, [XenonJohn] assembled a sort of simple light guide. By enclosing the area of the screen that contains orders in foil-lined cardboard, the sensor can get a general approximation of the amount of red (sell orders) versus green (buy orders). The data gets read by an Arduino which does a simple analysis and sends alerts when a threshold is crossed. He dubbed it the Crypto-Eye, and a video demo is embedded below.

Continue reading “RGB Sensor’s New Job: Cryptocurrency Trade Advisor”

Sculptural Grade M&M Sorter

Sorting M&Ms is really only a major concern if you happen to be working on a Van Halen tour, but it’s a fun exercise nonetheless. It’s for this reason we see plenty of sorting projects come our way, varying from the breadboard and cardboard variety, all the way up to final university projects. Today, [Karl] has blessed us with their sculptural-grade offering, and the attention to detail is stunning.

The project has been in gestation in [Karl]’s mind, on and off, for 10 years or so. The big problem centered around reliably separating out one M&M at a time from a hopper of many. From time to time, [Karl] would speak with other builders using similar techniques to his failed experiments, who often reported that the secret to their machine’s reliability was… careful video editing. It was only when a parts sorter flashed across the Hackaday feed that [Karl] found the mechanism that would work to make his project a reality.

Now that the individual candies could readily be separated and fed through a machine, the rest of the project came together quickly. A color sensor was combined with servos and a stepper motor to duct M&Ms into separate flasks.

The real value of this build, however, is in the overall attention paid to the aesthetics of the final product. The device was built to be a kinetic sculpture, able to run reliably with the minimum of attention at the behest of even an untrained user. By carefully optimising the mechanisms inside and building an attractive enclosure, [Karl] has developed something we’d be proud to show off in a living room.

 

LEGO Looper Makes Modular Music

This LEGO synth made by [Rare Beasts] had us grinning from ear to ear.

It combines elements from LEGO Mindstorms with regular blocks in order to make music with color. A different music sample is assigned to each of five colors: red, blue, green, yellow, and white. The blocks are attached to spokes coming off of a wheel made with NXT an EV3. As the wheel turns, the blocks pass in front of a fixed color sensor that reads the color and plays the corresponding sample. The samples are different lengths, so changing the speed of the wheel makes for some interesting musical effects.

As you’ll see in the short video after the break, [Rare Beasts] starts the wheel moving slowly to demonstrate the system. Since the whole thing is made of LEGO, the blocks are totally modular. Removing a few of them here and there inserts rests into the music, which makes the result that much more complex.

LEGO is quite versatile, and that extends beyond playtime. It can be used to automate laboratory tasks, braid rope, or even simulate a nuclear reactor. What amazing creations have you made with it? Let us know in the comments.

Continue reading “LEGO Looper Makes Modular Music”

Soda Fridge Hack To Fix A Lazy People Problem

[Paul] participated in a hackathon at work and created a hack to help solve what was ultimately a people problem. A soda fridge at work wasn’t getting refilled when empty. Instead of trying to make people less lazy, [Paul] went with making the fridge more needy.

The first thing [Paul] did was make a soda fridge refill sensor from a scale. As the fridge got emptier, it got lighter. The scale senses that and can decide it’s time for a refill. The only part missing was how to read the output from the scale. To do that, he took an unusual approach.
Continue reading “Soda Fridge Hack To Fix A Lazy People Problem”

Skittles Sorter

Only Eat Red Skittles? We’ve Got You Covered.

Are you a bit obsessive compulsive with lots of certain things? We are too. Like Skittles! If you’re the kind of person who likes to sort their Skittles, you should seriously look into making your own 3D printed Skittles Sorter.

Built more to challenge his new 3D printer, [MrPrezident] was looking for a project to combine mechanical design with a bit of image recognition prowess — so he came up with this clever, and compact, Skittle sorting machine.

It uses an Arduino Uno with a ZITRADES color sensor module to identify the color of each candy. A small LED helps illuminate the Skittles to ensure an accurate color reading. Then, depending on the color, a series of gears rotate the Skittles piece to its designated color repository.

Theoretically it should also work with M&M’s (which are a bit smaller) but unfortunately, there are 6 colors of M&M’s and only 5 colors of Skittles. What would the machine do then!? We don’t see a reject bin!

Continue reading “Only Eat Red Skittles? We’ve Got You Covered.”

Fail Of The Week: Color Meter For Adjusting LEDs

fotw-color-meter

[John Peterson] answered our call to document your hacks by discussing what he learned while building this color meter. He conceived the project as a way to precisely match the color output of LEDs driven with a PWM signal. The thought was that it could sample an LED’s output, then use that data to calculate values necessary to match the color of other LEDs. This is a good idea when using LEDs of different types, but even diodes from the same production line can show variations in color output.

Of course this project wouldn’t be featured as a Fail of the Week if it worked as he had expected. It turns out the sensor that he used, an Avago ADJD-S371-QR999 on a SparkFun breakout board, takes very quick color readings. This is great for solid objects, but not great for a light source being switched on and off like the PWM LEDs.

We like it that [John] posted a list of lesson learned on the project. The real fail is in trying to use this particular sensor, but we figure there must be some way to get meaningful data through sampling. Check out the page for the retired sensor which also includes a link to the datasheet. Can you think of a firmware hack which would allow this hardware to sample so that the PWM value could be extrapolated through averaging or other calculations? Let us know in the comments.


2013-09-05-Hackaday-Fail-tips-tileFail of the Week is a Hackaday column which runs every Wednesday. Help keep the fun rolling by writing about your past failures and sending us a link to the story — or sending in links to fail write ups you find in your Internet travels.

Nintendo Light Gun Retrofit Lets It Play Color-based Games

This Nintendo light gun, aka Zapper, looks like a stock device. But a peek inside shows that the circuit board has been replaced. [CNLohr] added USB functionality and a few extra sensors that let him write his own games for that use the classic controller.

After cracking open the case he measured the shape of the circuit board so that he could recreate it exactly. This let him design his own board that would drop right into the same plastic support pieces as the original. His circuit uses an ATmega8u2 to provide a USB connection and read the attached sensors. One interesting aspect is the group of four long traces that act as an expandable i2c bus. [CNLohr] went with this so that he could use daughter boards to add in sensors later. In the demonstration seen after the video he’s using a photodiode as a color sensor. It allowed him to write the color-based game seen above where you shoot a different color of target in each round.

Continue reading “Nintendo Light Gun Retrofit Lets It Play Color-based Games”