Hackaday Links Column Banner

Hackaday Links: January 5, 2020

It looks like the third decade of the 21st century is off to a bit of a weird start, at least in the middle of the United States. There, for the past several weeks, mysterious squads of multicopters have taken to the night sky for reasons unknown. Witnesses on the ground report seeing both solo aircraft and packs of them, mostly just hovering in the night sky. In mid-December when the nightly airshow started, the drones seemed to be moving in a grid-search pattern, but that seems to have changed since then. These are not racing drones, nor are they DJI Mavics; witnesses report them to be 6′ (2 meters) in diameter and capable of staying aloft for 90 minutes. These are serious professional machines, not kiddies on a lark. So far, none of the usual government entities have taken responsibility for the flights, so speculation is all anyone has as to their nature. We’d like to imagine someone from our community will get out there with radio direction finding gear to locate the operators and get some answers.

We all know that water and electricity don’t mix terribly well, but thanks to the seminal work of White, Pinkman et al (2009), we also know that magnets and hard drives are a bad combination. But that didn’t stop Luigo Rizzo from using a magnet to recover data from a hard drive. He reports that the SATA drive had been in continuous use for more than 11 years when it failed to recover after a power outage. The spindle would turn but the heads wouldn’t move, despite several rounds of percussive maintenance. Reasoning that the moving coil head mechanism might need a magnetic jump-start, he probed the hard drive case with a magnetic parts holder until the head started moving again. He was then able to recover the data and retire the drive. Seems like a great tip to file away for a bad day.

It seems like we’re getting closer to a Star Trek future every day. No, we probably won’t get warp drives or transporters anytime soon, and if we’re lucky velour tunics and Spandex unitards won’t be making a fashion statement either. But we may get something like Dr. McCoy’s medical scanner thanks to work out of MIT using lasers to conduct a non-contact medical ultrasound study. Ultrasound exams usually require a transducer to send sound waves into the body and pick up the echoes from different structures, with the sound coupled to the body through an impedance-matching gel. The non-contact method uses pulsed IR lasers to penetrate the skin and interact with blood vessels. The pulses rapidly heat and expand the blood vessels, effectively turning them into ultrasonic transducers. The sound waves bounce off of other structures and head back to the surface, where they cause vibrations that can be detected by a second laser that’s essentially a sophisticated motion sensor. There’s still plenty of work to do to refine the technique, but it’s an exciting development in medical imaging.

And finally, it may actually be that the future is less Star Trek more WALL-E in the unlikely event that Segway’s new S-Pod personal vehicle becomes popular. The two-wheel self-balancing personal mobility device is somewhat like a sitting Segway, except that instead of leaning to steer it, the operator uses a joystick. Said to be inspired by the decidedly not Tyrannosaurus rex-proof “Gyrosphere” from Jurassic World, the vehicle tops out at 24 miles per hour (39 km/h). We’re not sure what potential market for these things would need performance like that – it seems a bit fast for the getting around the supermarket and a bit slow for keeping up with city traffic. So it’s a little puzzling, although it’s clearly easier to fully automate than a stand-up Segway.

Pushing Tin Remotely: The Start Of Flight Control In The Cloud

In a 1999 movie (Pushing Tin), a flight controller is a passenger on a plane and tells the flight attendant that he needs to speak to the person controlling the plane. The flight attendant tells him the pilot is very busy to which the controller responds, “…you really think the pilot is controlling this plane? That would really scare me.” We wonder what that fictional character would think flying into Loveland Colorado. Their Colorado Remote Tower Project. While there’s still a human flight controller, they aren’t physically located at the airport and rely on remote cameras and radar so the controller can be located elsewhere.

The subject airport is the Northern Colorado Regional Airport and is the state’s busiest airport that has no tower. While the concept — generically known as Remote and Virtual Tower or RVT — dates back to 2002, its adoption is only now starting to pick up steam. An airport in Sweden was the first to go live for normal use in April of 2015, but the Colorado installation is the first approved in the United States. If the official site is a little too dry for you, there’s a CBS report with a video that gives you a quick overview of what’s happening. Or dive in with the demonstration video you can see below.

Continue reading “Pushing Tin Remotely: The Start Of Flight Control In The Cloud”

Phone Controlled Solar Charged Tank

[youtube=http://www.youtube.com/watch?v=RmLU4GS7zAI]

This looks like a fun little project. [Chris] has built a tank that he is controlling using his iPhone.  Constructed mainly of off the shelf parts, like an Arduino and an Xbee wireless unit, the tank is controlled via processing. You can see that it is fairly responsive as he changes the speed of the motors. You don’t need an iPhone for this, really to do exactly what he’s doing any multi-touch input would work. You can download the code for it from his site.

We’re a bit curious about the solar charging. How much power does this use? Doesn’t that panel look a bit small? How long does it take to charge?

[via HacknMod]

How To Properly Dispose Of Fruitcake

[youtube=http://www.youtube.com/watch?v=3Tsgz3G0E1c]

While doing serious fruitcake research, (no, really) we stumbled across the Great Fruitcake Toss held every January in Colorado. The particular entry above caught our eye. Omega 380 was built by a group of Boeing engineers and currently holds the distance record of 1,420feet. It’s a large compressed air cannon. All pressure is human generated using an exercise bike turning a pump. Apparently the team’s first contest entry was a classic surgical tubing slingshot. It eventually broke down during a very cold year, so they switched to this newer design. You can see more videos on the Operation Fruitcake blog.