See Satellites In Broad Daylight With This Sky-Mapping Dish Antenna

If you look up at the night sky in a dark enough place, with enough patience you’re almost sure to see a satellite cross the sky. It’s pretty cool to think you’re watching light reflect off a hunk of metal zipping around the Earth fast enough to never hit it. Unfortunately, it doesn’t work during the daylight hours, and you really only get to see satellites in low orbits.

Thankfully, there’s a trick that allows you to see satellites any time of day, even the ones in geosynchronous orbits — you just need to look using microwaves. That’s what [Gabe] at [saveitforparts] did with a repurposed portable satellite dish, the kind that people who really don’t like being without their satellite TV programming when they’re away from home buy and quickly sell when they realize that toting a satellite dish around is both expensive and embarrassing. They can be had for a song, and contain pretty much everything needed for satellite comms in one package: a small dish on a motorized altazimuth mount, a low-noise block amplifier (LNB), and a single-board computer that exposes a Linux shell.

After figuring out how to command the dish to specific coordinates and read the signal strength of the received transponder signals, [Gabe] was able to cobble together a Python program to automate the task. The data from these sweeps of the sky resulted in heat maps that showed a clear arc of geosynchronous satellites across the southern sky. It’s quite similar to something that [Justin] from Thought Emporium did a while back, albeit in a much more compact and portable package. The video below has full details.

[Gabe] also tried turning the dish away from the satellites and seeing what his house looks like bathed in microwaves reflected from the satellite constellation, which worked surprisingly well — well enough that we’ll be trawling the secondary market for one of these dishes; they look like a ton of fun.

Continue reading “See Satellites In Broad Daylight With This Sky-Mapping Dish Antenna”

Hackaday Links Column Banner

Hackaday Links: January 15, 2023

It looks like the Martian winter may have claimed another victim, with reports that Chinese ground controllers have lost contact with the Zhurong rover. The solar-powered rover was put into hibernation back in May 2022, thanks to a dust storm that kicked up a couple of months before the start of local winter. Controllers hoped that they would be able to reestablish contact with the machine once Spring rolled around in December, but the rover remains quiet. It may have suffered the same fate as Opportunity, which had its solar panels covered in dust after a planet-wide sandstorm and eventually gave up the ghost.

What’s worse, it seems like the Chinese are having trouble talking to the Tianwen-1 orbiter, too. There are reports that controllers can’t download data from the satellite, which is a pity because it could potentially be used to image the Zhurong landing site in Utopia Planitia to see what’s up. All this has to be taken with a grain of dust, of course, since the Chinese aren’t famously transparent with their space program. But here’s hoping that both the rover and the orbiter beat the odds and start doing science again soon.

Continue reading “Hackaday Links: January 15, 2023”

Tune Your Dish Antenna Like A Pro

It’s a problem we all have at one time or another: your five-meter radio astronomy dish gets out of calibration and you don’t have a ridiculously expensive microwave holography rig on hand to diagnose it. OK, maybe this isn’t your problem, but when [Joe Martin]’s parabolic antenna got out of whack, he set out to diagnose and repair it, and then wrote up how he did it. You can download the PDF from his radio astronomy articles collection.

At the heart of the measurement rig is a laser rangefinder connected to a Porcupine Labs interface that passes the data on to a Pi 4. This is placed on the end of a two-degree-of-freedom servo gimbal that scans over the surface of the dish, measuring its shape. After measuring and math, [Joe] found out that it’s a little bit long here and short there, he attached two cables with turnbuckles to the front of the dish and pulled it back into shape — the sort of thing that you should probably only do if you’ve got a measurement rig already set up.

The Fluke rangefinder and Porcupine labs interface combo is pretty sweet, but it comes with a fairly hefty price tag. (Nothing compared to a professional dish measurement rig, we presume.) We’ve seen a few attempt at hacking into el-cheapo laser rangefinders, but other than [iliasam]’s heroic effort where he ended up writing his own firmware, it doesn’t seem like there are any successes. A shame, because applications like [Joe]’s prove that there’s a need for one. Let us know if there’s anything we missed?

Thanks [Ethan] for the tip!

Satellite Ground Station Upcycles Trash

While the term “upcycle” is relatively recent, we feel like [saveitforparts] has been doing it for a long time. He’d previously built gear to pick up low-Earth orbit satellites, but now wants to pick up geosynchronous birds which requires a better antenna. While his setup won’t win a beauty contest, it does seem to work, and saved some trash from a landfill, too. (Video, embedded below.)

Small dishes are cheap on the surplus market. A can makes a nice feedhorn using a classic cantenna design, although that required aluminum tape since the only can in the trash was a cardboard oatmeal carton. The tape came in handy when the dish turned out to be about 25% too small, as well.

Continue reading “Satellite Ground Station Upcycles Trash”

After Eight-Month Break, Deep Space Network Reconnects With Voyager 2

When the news broke recently that communications had finally been re-established with Voyager 2, I felt a momentary surge of panic. I’ve literally been following the Voyager missions since the twin space probes launched back in 1977, and I’ve been dreading the inevitable day when the last little bit of plutonium in their radioisotope thermal generators decays to the point that they’re no longer able to talk to us, and they go silent in the abyss of interstellar space. According to these headlines, Voyager 2 had stopped communicating for eight months — could this be a quick nap before the final sleep?

Thankfully, no. It turns out that the recent blackout to our most distant outpost of human engineering was completely expected, and completely Earth-side. Upgrades and maintenance were performed on the Deep Space Network antennas that are needed to talk to Voyager. But that left me with a question: What about the rest of the DSN? Could they have not picked up the slack and kept us in touch with Voyager as it sails through interstellar space? The answer to that is an interesting combination of RF engineering and orbital dynamics.

Continue reading “After Eight-Month Break, Deep Space Network Reconnects With Voyager 2”

DIY Radio Telescopes Hack Chat

Join us on Wednesday, February 12 at noon Pacific for the DIY Radio Telescopes Hack Chat with James Aguirre!

For most of history, astronomers were privy to the goings-on in the universe only in a very narrow slice of the electromagnetic spectrum. We had no idea that a vibrant and wondrous picture was being painted up and down the wavelengths, a portrait in radio waves of everything from nearly the moment of creation to the movement of galaxies. And all it took to listen in was an antenna and a radio receiver.

Over the years, radio telescopes have gotten more and more sophisticated and sensitive, and consequently bigger and bigger. We’re even to the point where one radio telescope often won’t cut it, and astronomers build arrays of telescopes spread over miles and miles, some with antennas that move around on rails. In the search for signals, radio astronomy has become the very definition of “Big Science.”

But radio astronomy doesn’t have to be big to be useful. James Aguirre, an astronomer at the University of Pennsylvania, spends his days (and nights) studying the radio universe with those big instruments. But he’s also passionate about down-scaling things and teaching everyone that small radio telescopes can be built on the cheap. His Mini Radio Telescope project uses a cast-off satellite TV dish and a couple of hundred bucks worth of readily available gear to scan the skies for all sorts of interesting phenomena.

Dr. Aguirre will join us on the Hack Chat to discuss all things radio astronomy, and how you can get in on the radio action on the cheap. Chances are good your junk pile — or your neighbor’s roof — has everything you need, and you might be surprised how approachable and engaging DIY radio astronomy can be.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, February 12 at 12:00 PM Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about. Continue reading “DIY Radio Telescopes Hack Chat”

Umbrella And Tin Cans Turned Into WiFi Dish Antenna

There’s something iconic about dish antennas. Chances are it’s the antenna that non-antenna people think about when they picture an antenna. And for many applications, the directionality and gain of a dish can really help reach out and touch someone. So if you’re looking to tap into a distant WiFi network, this umbrella-turned-dish antenna might be just the thing to build.

Stretching the limits of WiFi connections seems to be a focus of [andrew mcneil]’s builds, at least to judge by his YouTube channel. This portable, foldable dish is intended to increase the performance of one of his cantennas, a simple home-brew WiFi antenna that uses food cans as directional waveguides. The dish is built from the skeleton of an umbrella-style photographer’s flash reflector; he chose this over a discount-store rain umbrella because the reflector has an actual parabolic shape. The reflective material was stripped off and used as a template to cut new gores of metal window screen material. It’s considerably stiffer than the reflector fabric, but it stretches taut between the ribs and can still fold up, at least sort of. An arm was fashioned from dowels to position the cantenna feed-horn at the focus of the reflector; not much detail is given on the cantenna itself, but we assume it’s similar in design to cantennas we’ve featured before.

[andrew] hasn’t done rigorous testing yet, but a quick 360° scan from inside his shop showed dozens of WiFi signals, most with really good signals. We’ll be interested to see just how much this reflector increases the cantenna’s performance.

Continue reading “Umbrella And Tin Cans Turned Into WiFi Dish Antenna”