Modular Breadboard Snaps You Into Benchtop Tidiness

Solderless breadboards are a fantastic tool for stirring the creative juices. In a few seconds, you can go from idea to prototype without ever touching the soldering iron. Unfortunately, the downside to this is that projects tend to expand to occupy all the available space on the breadboard, and the bench surrounding the project universally ends up cluttered with power supplies, meters, jumpers, and parts you’ve swapped in and out of the circuit.

In an attempt to tame this runaway mess, [Raph] came up with this neat modular breadboard system. It hearkens back to the all-in-one prototyping systems we greatly coveted when the whole concept of solderless breadboards was new and correspondingly unaffordable. Even today, combination breadboard and power supply systems command a pretty penny, so rolling your own might make good financial sense. [Raph] made his system modular, with 3D-printed frames that lock together using clever dovetail slots. The prototyping area snaps to an instrumentation panel, which includes two different power supplies and a digital volt-amp meter. This helps keep the bench clean since you don’t need to string leads all over the place. The separate bin for organizing jumpers and tidbits that snaps into the frame is a nice touch, too.

Want to roll your own? Not a problem, as [Raph] has thoughtfully made all the build files available. What’s more, they’re parametric so you can customize them to the breadboards you already have. The only suggestion we have would be that making this compatible with [Zack Freedman]’s Gridfinity system might be kind of cool, too.

A wood-and-plastic jig to make dovetail joints

3D Printed Template Makes Perfect Dovetail Joints

Dovetail joints on a piece of furniture are one of those features that make it say “master carpenter” rather than “IKEA”. Traditional hand-made dovetails require accurate measurements and even more accurate sawing and chiseling, skills that may take years to develop. A slightly less artisanal method is to use a router and a dovetail template; the router makes perfectly straight cuts while the template makes sure it goes only where it needs to go.

If you haven’t got one of those templates yet, check out [Guy Perez]’s design for an adjustable dovetail template that’s easy to produce with a 3D printer. It consists of ten separate pieces mounted on a T-rail, which enables them to slide sideways and thereby generate pins and tails of varying widths. The T-rail is mounted on a wooden body with an integrated clamp to hold the target piece, as well as an endstop to provide a reference for all measurements.

As you can see in the video embedded below, the resulting jig is easy to use and should result in near-perfect dovetails each time. [Guy] made the CAD files available as well as detailed instructions on their design, so you can easily adjust them if you need pieces with a different tail angle or want to use thicker wood.

While this jig will make cutting ordinary dovetail joints a lot easier, you can still show off your manual skills by making an impossible mallet. Want to join metal bits instead? Check out this cute little dovetail cube.

Continue reading “3D Printed Template Makes Perfect Dovetail Joints”

Giant PC fan

3D-Printed Parts Let You Assemble Your Own Biggest Fan

It’s getting close to the time of year when we need to start carefully vetting projects here at Hackaday. After all, nobody likes to get punked by an early April Fool’s joke. But as silly as this outsized PC fan looks, it sure seems like a legit build, if a bit on the pointless side.

Then again, perhaps pointless is too harsh a word to use. This 500-mm fan is by [Angus] over at Maker’s Muse, and it represents a lot of design work to make it buildable, as well as workable and (mostly) safe. Using both CNC-cut MDF and printed parts, the fan is an embiggened replica of a normal-sized case fan. The fan’s frame had to be printed in four parts, which lock together with clever interlocking joints. Each of the nine blades locks into a central hub with sturdy-looking dovetails.

And sturdy is important, as the fan is powered by a 1,500 Watt brushless DC motor. With a 4:1 reduction thanks to a printed gear train, the fan spins at around 3,300 RPM, which makes a terrifying noise. There’s a little bit of “speed-wobble” evident, but [Angus] managed to survive testing. The fan, however, did not — the 3D-printed gears self-destructed after a full-speed test, but not before the fan did its best wind tunnel imitation. And the RGB LEDs looked great.

This one reminds up of something we might see [Ivan Miranda] come up with. In fact, his super-sized 3D printer might have been just the thing to shorten [Angus]’ print times.

Continue reading “3D-Printed Parts Let You Assemble Your Own Biggest Fan”

This Mallet Has Backwards Dovetails… That’s Impossible!

Dovetails are a wedge-shaped joint found in woodworking. The wedge makes for strong joinery because a force that tries to pull it apart also increases the friction on the joint. This mallet has dovetails on either side that keep the head from flying off, but there’s also a through tenon in the center. This is an impossible joint as there’s no way to slide the mallet head onto the handle. The two pieces of wood must have grown that way!

As with everything, there’s a trick here, let it scratch your brain for a while before reading on… if you can guess how it’s done it’ll be very satisfying when you confirm your theory. Both the trick of the impossible mallet and the superb hand joinery are shown off in this video from the [Third Coast Craftsman].

The trick comes in the form of internal voids hidden from view once the two pieces of the mallet have been assembled. The through tenon is exactly as you’d expect: a straight tenon slides into a straight mortise in the mallet. The dovetails to either side of the handle and the pockets they mate with in the mallet head are not at all what you’d expect. The edges of the dovetail have been chamfered at 45 degrees so you can’t pull them to the outside of the mallet as you slide them into place. The opposite is the actual trick. Each of the dovetails bends inward until a ramp at the very end of the mallet pocket pushes it back into place.

The impossible mallet isn’t a new concept and stands as a formidable challenge for any accomplished woodworker. The images above are of [Jim Guilford’s] impossible mallet. Here the trick is fully exposed, showing the dovetail tenons of the handle clamped together as it is driven into place. Two things are striking here; the joints cannot be tested and must be perfect before assembly, and there is a real chance the tenons will break or the mallet head will split apart from the force of assembly. This project will test your courage as much as it will your patience.

Continue reading “This Mallet Has Backwards Dovetails… That’s Impossible!”

DIY Tiny Dovetail Cube Needs DIY Dovetail Cutter

Dovetail cutter, made from a 5 mm drill rod.

There’s a trinket called a dovetail cube, and [mitxela] thought it would make a fine birthday present. As you can see from the image, he was successful in creating a tiny version out of aluminum and brass. That’s not to say there weren’t challenges in the process, and doing it [mitxela] style means:

  • Make it tiny! 15 mm sides ought to do it.
  • Don’t have a tiny dovetail bit on hand, so make that as well.
  • Of course, do it all without CNC in free-machining style.
  • Whoops the brass stock is smaller than expected, so find a clever solution.
  • That birthday? It’s tomorrow, by the way.

The project was a success, and a few small learning experiences presented themselves. One is that the shape of a dovetail plays tricks on the human eye. Geometrically speaking, the two halves are even but it seems as though one side is slightly larger than the other. [mitxela] says that if he were to do it again, he’d make the aluminum side slightly larger to compensate for this visual effect. Also, deburring with a knife edge on such a small piece flattened the edges ever so slightly, causing the fit to appear less precise than it actually is.

Still, it was a success and a learning experience. Need more evidence that [mitxela] thrives on challenge? Take a look at his incredible vector game console project.