Algae On Your Plate

For those of us who grow up around natural swimming holes, algae are the reason we have to wash after taking a dip. Swimmer’s itch* or just being covered in green goop is not an attractive way to spend an afternoon. Lumping all algae together is not fair, some of it is nasty but some of it is delicious and humans have been eating it for generations.

If you are thinking that cases of algae cuisine are not widespread and that algae does not sound appealing, you are not alone. It is a tough sell, like convincing someone to try dandelions for the first time. It may not warrant a refrigerator section in the grocery store yet, but algae can produce protein-rich food which doesn’t require a lot of processing.

Currently, there is a lot of work to be done to bring up the efficiency of algae farms, and Qualitas has already started. The leaps they are making signify just how much room we have for improvement. The circulating paddle wheels, which can be seen in the video below the break, use one-third of the energy from their previous version. Their harvester uses one-thirtieth! Right now, their biggest cost comes from tanks of carbon dioxide, which seems off given that places such as power plants pay to get rid of the stuff. That should give some food for thought.

The 2018 Hackaday prize could use some algal submissions and you could take that to the bank. Ready to start growing your own algae, automate the process. It may also keep you from tripping while walking to the grocery store, or you can print with it.

Continue reading “Algae On Your Plate”

Oil Barrel Smoker

What would you do with a pair of oil drums and a craving for delicious food? Like any sane person, redditor [Kilgore_nrw] made the logical choice and built a smoker.

To make the build easier, he picked up a double barrel stove kit which came with a door, hinges, legs and flue connectors. While fixing the legs and mounting the stove door — high enough for a bed of bricks in the fire barrel — went as planned, he had to improvise the installation of the smoke flue. It ended up being the exact same diameter as the flue connectors, but notching it enough to slide into place made a satisfactory seal.

Not liking the look of having the stack at the ‘front’ of the smoker, he mounted it above the flue at the rear and added two sandstone slabs in the smoking chamber to evenly distribute the heat. Finishing touches included heavy duty drawer slides for the cooking rack — ensuring easy access to deliciousness — and painstakingly grinding off the old paint to apply a new heat resistant coating. For any fans out there, the finished pictures are a sight to behold.

Continue reading “Oil Barrel Smoker”

3D Printed Cookie Molds For The Best Speculoos

Experiencing nostalgia for the outstanding Belgian cuisine [Adam], currently stuck in Ohio, found himself in craving some home-made speculoos. For the uninitiated, speculoos is what those brown cookies usually served with coffee on planes dream of becoming one day.

To add some extra regional flavour, [Adam] decided to print his own molds featuring motifs from Brussels. The risks of 3D prints in the kitchen are the subject of a lively discussion. They are addressed in this project by recommending the use of food safe filament and sealant for the molds. The fact that the dough will be removed from the molds almost instantly and that the molds don’t go into the oven puts the risks in the vicinity of using plastic cutting boards in your kitchen.

[Adam]’s write up features solid, well illustrated baking instructions that should enable any of you to replicate this delicacy. Some links to additional references and two recipes are thrown in for good measure. The article finishes with detailed instructions for designing your own molds that take the properties of the medium into account, to ensure your custom motif will still be recognizable after baking. Line art with a stroke width of around 2-3 mm seems to work best. It is that time of year and we hope to see a lot more tricks to take your cookie and edible house designs to the next level so don’t forget to send in a tip.

With 3D printed molds having been used to shape resin, silicone and even metal, we are at a point where cookie dough looks like a natural progression.

Making Ice Cream With Heavy Metal

After his last project left him with an eleven-pound block of aluminum, [Jason] got to thinking of what most of us would in that situation: fresh made ice cream. His mind was on the frozen concoctions of the aptly named Cold Stone Creamery, a mall food court staple where a chilled stone is used to turn fresh ingredients into made to order sundaes.

[Jason] did the math and found that an eleven-pound chunk of aluminum can absorb a little over 67,000 joules, which is over twice the energy required to freeze 100 g of water. In place of water he would be using cream, condensed milk, and strawberries, but believed there was a large enough safety factor to account for the differences between his ingredients and pure water.

His first attempt didn’t go exactly as planned, but with his Flir One he was able to back up his theoretical numbers with some real-world data. He found that he needed to start the aluminum block at a lower temperature before adding his ingredients, and through experimentation determined the block only had enough energy to freeze 30 g of liquid.

In the end [Jason] was satisfied with the frozen treat he managed to make from the leftovers of his radial mill project, but theorizes that an ever better solution would be to use a brine solution and drop the aluminum block all together.

Of course, if putting food on a slab of metal from your workshop doesn’t sound too appealing, you could always go the NASA route and freeze dry it. Either method will probably make less of a mess than trying to print objects with it.

Push Button, Receive Beverage!

Here’s a rec-room ready hack: an automatic drink dispenser.

[truebassB]’s dispenser operates around a 555 timer, adjusted by a potentiometer. Push a button and a cup pours in a few seconds, or hold the other button to dispense as much as you want.

The dispenser is made from MDF and particle board glued together, with some LEDs and paper prints to spruce it up. Just don’t forget a small spill sink for any miscalculated pours. You needn’t fret over the internals either, as the parts are easily acquired: a pair of momentary switches, a 12V micro air pump, a brass nozzle, food-safe pvc tube,  a custom 555 timing circuit — otherwise readily available online — a toggle switch, a power supply plug plus adapter and a 12V battery.

Continue reading “Push Button, Receive Beverage!”

Adulterated food detection

Hackaday Prize Entry: Detecting Adulterated Food Using AI

Adulterated food is food that has a substance added to it to save on manufacturing costs. It can have a negative effect, it can reduce the food’s potency or it can have no effect at all. In many cases it’s done illegally. It’s also a widespread problem, one which [G. Vignesh] has decided to take on as his entry for the 2017 Hackaday Prize, an AI Based Adulteration Detector.

On his hackaday.io Project Details page he outlines some existing methods for testing food, some which you can do at home: adulterated sugar may have chalk added to it, so put it in water and the sugar will dissolve while the chalk will not. His approach is to instead take high-definition photos of the food and, on a Raspberry Pi, apply filters to them to reveal various properties such as density, size, color, texture and so on. He also mentions doing image analysis using a deep learning neural network. This project touches us all and we’ll be watching it with interest.

If all this talk of adulterated food makes you nervous about your food supply then consider growing our own, hacker style. One such project we’ve seen here on Hackaday is Farmbot, an open-source CNC farming robot. Another such is MIT’s OpenAg Food Computer, a robotic control and monitoring growing chamber.

3D Printing Gets Cheesy

Has it ever crossed your mind that everything you see for sale–no matter how mundane–is someone’s life passion? Or, at least, their work passion. Somewhere as we speak two or three people are in a room trying to figure out how to make a whoopie cushion for two cents less than before. Someone is touting the virtues of the newest design in egg cartons. The guys that make the tube that carries your money to the bank teller at the drive through window? They exist, too.

It is natural for us to think about improving 3D printers but most of us print plastic. We might wish we could print metal. But researchers in a few places are printing cheese. We didn’t say hackers with the muchies, we said researchers. There’s a colorful slide show from the University College Cork in Ireland, for example. They printed cheese at two different speeds and used a laser scanning microscope and a rheometer to analyze the results. We’ve seen rheometers in plastic factories, but never in the kitchen. Meanwhile on the hacker front, apparently spray cheese cans work as an easy cold extruder (see video below).

Continue reading “3D Printing Gets Cheesy”