This Extra-Large, Two-Stage Fume Extractor Really Sucks

Solder fumes are not nice on the lungs; nor are fumes from superglue, epoxy, or a whole mess of other things we often find ourselves using on the bench. Some people might be able to go the fume hood route to toss that all outside, but for the rest of us, there’s fume extractors. [Raph] has produced an extra-large, carbon-filtering, two-stage fume extractor that by all accounts really sucks — it is effective at hoovering up solder fumes up to 10″ from its inlet.

Photo of fume extractor
Note the 18V tool battery in the base. That’ll go for a bit.

Even better, [Raph] built a battery box for an 18 V cordless tool battery, and broke out banana plugs so this doubles as a variable power supply via a cheap LM2596 based DC-DC converter. It also serves as a speed controller for the fans, which makes us wonder if you can adjust the PSU output and the fan speed independently…

Maximum suckage is achieved through careful baffle design. Check out the blog to see the trial-and-error process at work. Of course, having a 200 mm axial fan and 140 mm blower fan front and rear is going to move some air no matter what. Which is required to get air flow through the 38 mm thick activated carbon filter that should scrub all nasties quite nicely. We aren’t filtration experts but we can agree with [Raph]’s estimate that it will last “a while”.

If you want to roll your own, all of the STEP files are on GitHub, and [Raph]’s blog has an excellent step-by-step build guide. We’ve seen other hacks from [Raph] before, from his dovetailed modular breadboard to the machine that shaped his bed and automation for his camper van.

Big Server Fan Becomes Fume Extractor

[Anthony Kouttron] wanted a fume extractor for his personal electronics lab, but he didn’t like the look of the cheap off-the-shelf units that he found. Ultimately, he figured it couldn’t be that hard to build own portable fume extractor instead.

The build is based around a mighty 110-watt centrifugal fan from an IBM server that’s rated at approximately 500 CFM. It’s a hefty unit, and it should be, given that it retails at over $200 on DigiKey. [Anthony] paired this fan with off-the-shelf HEPA and activated carbon filters. These are readily available from a variety of retailers. He didn’t want to DIY that part of the build, as the filter selection is critical to ensuring the unit actually captures the bad stuff in the air. He ended up building a custom power supply for the 12-volt fan, allowing it to run from common drill batteries for practicality’s sake.

Few of us have need for such a beefy fume extractor on the regular. Indeed, many hobbyists choose to ignore the risk from soldering or 3D printing fumes. Still, for those that want a beefy fume extractor they can build themselves, it might be worth looking over [Anthony]’s initial work.

We’ve seen some other great DIY fume extractors before, too. Even those that use drill batteries! If you’ve been cooking up your own solution, don’t hesitate to drop us a line!

Power Tool Battery Fume Extractor

A solder fume extractor is something we could probably all use. While there isn’t much to them, [Steven Bennett] put a lot of thought into making one that was better for him, and we admired his design process, as well as the extractor fan itself. You can see the finished result in the video below.

The electrical design, of course, is trivial. A computer fan, a switch, and a battery — in this case, a Makita power tool battery. But the Fusion 360 design for the 3D printed parts got a lot of thought to make this one of the best fume extractor fans we’ve seen.

Continue reading “Power Tool Battery Fume Extractor”

Kirby Sucks, Literally

What’s common between one of the most legendary video game characters of all time and a fume extractor ? They both suck. [Chris Borge] is not an electronics hobbyist and only does some occasional soldering. This made his regular fume extractor bulky and inconvenient to position where needed. What could serve him better would be a small extractor that could be attached to a clip or an arm on his helping hand accessory. Being unable to find an off-the-shelf product or a suitable 3d printed design that he liked, he built the Kirby 40mm Fume Extractor.

His initial idea was for a practical design more suited to his specific needs. But somewhere along the way, the thought of a Kirby fan popped up in his head, and it was too good an idea to pass up. Several Kirby fan designs already existed, but none that satisfied [Chris]. Getting from paper sketch to CAD model required quite an effort but the result was worth the trouble, and the design was quite faithful to the original character features. The main body consists of two halves that screw together, and an outlet grill at the back. The body has space for a 40 mm fan and a 10 mm charcoal filter in the front. The wires come out the back, and connect directly to a power supply barrel jack. Arms and eyes are separate pieces that get glued to the body. The feet glue to an intermediate piece, which slides in a dove tail grove in the body. This allows Kirby to be tilted at the right position for optimum smoke extraction.

While Kirby served the purpose, it still didn’t meet the original requirement of attaching to a clip or arm on the helping hand. So [Chris] quickly designed a revised, no-frills model which is essentially a square housing to hold the fan and the filter. It has a flexible stand so it can be placed on a bench. And it can also be attached to the helping hand, making it a more utilitarian design. This design has the charcoal filter behind the fan, but he also has a third design for folks who prefer to have the filter at the front.

He now had a more useful, practical fume extractor, but he couldn’t bring himself to discard his original Kirby. So he printed a couple more 3D parts so that Kirby could fit the end of his vacuum cleaner hose. Now, Kirby sits on his bench, and helps suck up all the bits and bobs of trash on his workbench. We’re sure Kirby is quite pleased with his new role.

Continue reading “Kirby Sucks, Literally”

Overengineered Fume Extractor, Version 2

We all know the temptation of adding one more feature to your latest project. [Arnov Sharma] didn’t resist the urge. Building on his 3D-printed fume extractor, he developed a new version made of PCB material.

The device has a 18650 battery and corrects several flaws in the original design we covered earlier. In particular, the new version uses a quiet fan and consumes less power. There is also a 3D-printed filter housing that uses cotton as a filter media. Continue reading “Overengineered Fume Extractor, Version 2”

DIY Fume Extractor With ATtiny13 Speed Control

Let’s be honest, commercially-available soldering fume extractors are cheap enough that you probably don’t need to build one yourself. But it still makes for a good starter project, especially if you go out of your way to really flex your maker muscles like [Arnov Sharma] did with this tidy build.

All the hallmarks of modern hardware making are on display here — you’ve got the 3D printed enclosure, a motor salvaged from a cheap toy quadcopter, and a custom PCB which uses the ATtiny13 and an AO4406 MOSFET to implement a PWM speed control.

The first press of the button starts the motor off at max speed, but keep pushing it, and the motor’s speed will ramp down until it turns off entirely. There’s even a TP4056 charge controller to top off the internal 18650 cell when the fume extractor is connected to a USB power source.

Is it over-engineered? Perhaps. But projects like these are a great opportunity to practice your skills, whether it’s PCB design or creating bespoke 3D printed enclosures. In the era of cheap 32-bit microcontrollers, it’s also refreshing to see hackers still dragging the ATtiny from time to time.

Continue reading “DIY Fume Extractor With ATtiny13 Speed Control”

Custom Soldering Fume Fan Doesn’t Skimp On Features

Prolific maker [sjm4306] tells us the first iteration of his soldering fan was little more than some cardboard, electrical tape, and a hacked up USB cable. But as we all know, these little projects have a way of evolving over time. Fast forward to today, and his custom fan is a well-polished piece of kit that anyone with a soldering iron would be proud to have on their workbench.

Cardboard has given way to a 3D printed enclosure that holds the fan, electronics, a pair of 18650 cells, and a easily replaceable filter. Between the marbled filament, debossed logo, properly countersunk screw holes, and rounded corners, it’s really hard to overstate how good this case looks. We’ve shamefully produced enough boxy 3D printed enclosures to know that adding all those little details takes time, but the end result really speaks for itself.

Fan internals, with a look at the custom PCB.

The user interface running on the OLED is also an exceptionally nice touch. Sure the fan doesn’t need a graphical display, and [sjm4306] could have saved a lot of time and effort by using a turn-key speed controller, but the push-button configuration complete with graphical indications of fan speed and battery life really give the final product a highly professional feel.

In the video below, [sjm4306] reveals that while the finished product might look great, there were a few bumps in the road. Issues with clearance inside the case made him rethink how things would be wired and mounted, leading to a far more cramped arrangement than he’d anticipated. Part of the problem was that he designed the case first and tried to integrate the electronics later, rather than the other way around; a common pitfall you’d be wise to watch out for.

It’s been proven that, without some external input, solder smoke is going to go right in your face. Whether or not you need to do something this complex is naturally up for debate, but if you want to keep all that nasty stuff out of your lungs, you’d do well to outfit your workbench with some kind of fan.

Continue reading “Custom Soldering Fume Fan Doesn’t Skimp On Features”