Close-up of a woman's neck with a haptic patch

Hacking Haptics: The 19-Sensor Patch Bringing Touch To Life

On November 6th, Northwestern University introduced a groundbreaking leap in haptic technology, and it’s worth every bit of attention now, even two weeks later. Full details are in their original article. This innovation brings tactile feedback into the future with a hexagonal matrix of 19 mini actuators embedded in a flexible silicone mesh. It’s the stuff of dreams for hackers and tinkerers looking for the next big thing in wearables.

What makes this patch truly cutting-edge? First, it offers multi-dimensional feedback: pressure, vibration, and twisting sensations—imagine a wearable that can nudge or twist your skin instead of just buzzing. Unlike the simple, one-note “buzzers” of old devices, this setup adds depth and realism to interactions. For those in the VR community or anyone keen on building sensory experiences, this is a game changer.

But the real kicker is its energy management. The patch incorporates a ‘bistable’ mechanism, meaning it stays in two stable positions without continuous power, saving energy by recycling elastic energy stored in the skin. Think of it like a rubber band that snaps back and releases stored energy during operation. The result? Longer battery life and efficient power usage—perfect for tinkering with extended use cases.

And it’s not all fun and games (though VR fans should rejoice). This patch turns sensory substitution into practical tech for the visually impaired, using LiDAR data and Bluetooth to transmit surroundings into tactile feedback. It’s like a white cane but integrated with data-rich, spatial awareness feedback—a boost for accessibility.

Fancy more stories like this? Earlier this year, we wrote about these lightweight haptic gloves—for those who notice, featuring a similar hexagonal array of 19 sensors—a pattern for success? You can read the original article on TechXplore here.

Lightweight Haptic Gloves With Electro-Osmotic Pump Arrays

Now that we have decent VR goggles, the world is more desperate than ever for a decent haptic interface for interacting with computers. We might be seeing a new leap forward in this wild new haptic glove design from the Future Interfaces Group at Carnegie Mellon University.

Feeling different surfaces in VR is possible using this technology.

The glove gives each fingertip and thumb a small haptic pad. The pads are driven by electro-osmotic pumps, which are effectively solid-state. They use electricity to move fluid to create small dimples on the pad to provide haptic feedback to the user. The pads have 20 pixels per square centimeter, are quick and responsive, and can deform up to 0.5 mm in less than half a second.

The lightweight and self-contained electro-osmotic pads mean the haptic system can be far lighter and more practical than designs that use solenoids or other traditional technologies. The device is also high resolution enough that a user can feel pressure from a surface or the edges of an object in VR. If you watch the video, some of the demonstrations are quite revolutionary.

We’ve seen some other great haptics projects before too, like these low-cost force feedback gloves. Video after the break.

Continue reading “Lightweight Haptic Gloves With Electro-Osmotic Pump Arrays”

AI-Powered Snore Detector Shakes The Pillow So You Won’t

If you snore, you’ll probably find out about it from someone. An elbow to the ribs courtesy of your sleepless bedmate, the kids making fun of you at breakfast, or even the lady downstairs calling the cops might give you the clear sign that you rattle the rafters, and that it’s time to do something about it. But what if your snores are a bit more subtle, or you don’t have someone to urge you to roll over? In that case, this AI-powered haptic snore detector might be worth building.

The most distinctive characteristic of snoring is, of course, its sound, and that’s exactly what [Naveen Kumar] chose as a trigger. To differentiate between snoring and other nighttime sounds, [Naveen] chose an Arduino Nicla Voice sensor board, which sports a Syntiant NDP120 deep-learning processor and a built-in MEMS microphone. To generate a model that adequately represents the full tapestry of human snores, a publicly available snoring dataset — because of course that’s a thing — was used for training. Importantly, the training data included samples of non-snoring sounds, like sirens and thunder, as well as clips of legit snoring mixed with these other sounds. The model is trained with an online tool and downloaded onto the board; when it detects the sweet sound of sawing wood three times in a row, a haptic driver board vibrates the pillow as a gentle reminder to reposition. Watch it in action in the brief video below.

Snoring is something that’s easy to make light of, but in all seriousness, it’s not something to be taken lightly. Hats off to [Naveen] for developing a tool like this, which just might let you know you’ve got a problem that bears a closer look by a professional. Although it might work better as a wearable rather than a pillow-shaker.

Continue reading “AI-Powered Snore Detector Shakes The Pillow So You Won’t”

Exploring The Hall Effect For Haptic Feedback PS4 Joysticks

Modern gaming console controllers aren’t without their annoyances — Joy-Con drift, anyone? The problems might stem from design deficiencies, but we suspect that user enthusiasm and the mechanical stress it can introduce might play a significant role as well. Either way, [Marius Heier] decided to take a look at what would be required to build a better joystick and came up with some interesting results.

The first video below lays the basic groundwork, with a bunch of experiments with 3-axis Hall effect sensors, specifically the Texas Instruments TMAG5273 and TMAG5170. They’re essentially the same sensor with different interfaces — SPI for the 5170 and I2C for the 5273. Using just one of these sensors, he was able to build a joystick with the usual X- and Y- axis control, but also with a rotary axis. What’s more, he built a motorized version using two NEMA 17 steppers to mechanically drive the stick back to center.

The joystick is bulky, but it looks like he’s got plans for a much smaller one with [Carl Bugeja]-style PCB motors that should fit into a PS4 controller. That’s the subject of the second video below, which uses a different Hall sensor — an Allegro A1304 — and is mainly concerned with getting the output of a non-motorized but considerably miniaturized joystick stick talking the language that the controller expects. It’s not a simple process, but it seems to be coming along nicely, and we’ll be watching progress closely.

Continue reading “Exploring The Hall Effect For Haptic Feedback PS4 Joysticks”

Seeing If Cheating At Chess The Hard Way Is Even Possible

With all the salacious stories about a cheating scandal rocking the world of championship-level chess, you’d think that we’d have delved into the story at least a bit here on Hackaday, especially given the story’s technical angle. But we haven’t, and it’s not because we’re squeamish about the details of the alleged cheat; rather, it’s because it’s just too easy to pun your way through a story like this. The lowest-hanging fruit isn’t always the sweetest.

But, we’ll give it a go, and play this one completely straight as we look at an experiment to determine if it’s even possible to cheat in the specific way that has been alleged. For the uninitiated, 19-year-old grandmaster [Hans Niemann] stands accused of cheating, possible through the use of a remote-controlled sex toy secreted in his rectum. The idea would be for an accomplice to use the toy, which contains a vibrating motor that’s controlled by an app either via Bluetooth or WiFi, to send suggested moves to [Niemann] based on a chess-playing AI’s analysis of the game.

Whether [Niemann] cheated or not is not the concern here, but rather [Captain Steel]’s experiment is just a first-pass look at whether it would be possible to cheat using the proposed technology — and most importantly, not get caught. He tried to replicate the scanning regime [Niemann] is now subject to at tournaments based on the allegations to see if a stand-in for the sex toy — a haptic motor attached to an ESP32 — would be detectable through various thicknesses of flesh. Rather than showing the same dedication to craft that [Niemann] is alleged to have shown, [Captain Steel] used slices of baloney as a stand-in for human flesh. He then tried scanning for RF emissions from the device through increasing layers of luncheon meat. We won’t spoil the results, other than to say that baloney turns out to actually be good for something.

We’ve covered another less-invasive method of cheating before, which given the results above is probably more likely to be discovered.

Continue reading “Seeing If Cheating At Chess The Hard Way Is Even Possible”

An In-Depth Look At The Haptic Smart Knob

At Hackaday, we love those times when we get a chance to follow up on a project that we’ve already featured. Generally, it’s because the project has advanced in some significant way, which is always great to see. Sometimes, though, new details on the original project are available, and that’s where we find ourselves with [Scott Bez] and his haptic smart knob project.

Alert readers may recall [Scott]’s announcement of this project back in March. It made quite a splash, with favorable comments and a general “Why didn’t I think of that?” vibe. And with good reason; the build quality is excellent, and the idea is simple yet powerful. By attaching a knob to the shaft of a brushless DC motor and mounting a small circular LCD screen in the middle, [Scott] came up with an input device that could be reprogrammed on the fly. The BLDC can provide virtual detents at any interval while generating haptic feedback for button pushes, and the LCD screen can provide user feedback.

But how is such a thing built? That’s the subject of the current video, which has a ton of neat design details and build insights. The big challenge for [Scott] was supporting the LCD screen in the middle of the knob while still allowing the knob — and the motor — to rotate. Part of the solution was, sadly, a hollow-shaft motor that was out of stock soon after he released this project; hopefully a suitable replacement will be available soon. Another neat feature is the way [Scott] built tiny strain gauges into the PCB itself, which pick up the knob presses that act as an input button. We also found the way button press haptics are provided by a quick jerk of the motor shaft very clever.

This is one of those projects that seems like a solution waiting for a problem, and something that you’d build just for the coolness factor. Hats off to [Scott] for following up a sweet build with equally juicy details.

Continue reading “An In-Depth Look At The Haptic Smart Knob”