Have Alexa Open Your Garage Door

[yoyotechKnows] built an Alexa-controlled garage door opener after his Liftmaster stopped working. Now all he has to do is holler at his mobile phone and he can raise and lower his garage doors at will.

His project is based around a Photon WiFi kit, with a pair of LCC 120 digital relays triggering the two doors, reed switches, and a serial-equipped LCD to display door status, with Alexa, IFTTT, and OpenHab to process the commands. You can find his code in the project writeup.

Currently he has a LCD display informing him of the status of each door, hot glued a reed switch to keep track of whether each one is closed. This might seem a little bit extraneous since he can also just look at the doors from within the garage. However, he’s thinking about putting the display inside his house. But couldn’t he just ask Alexa?

We love us our home automation here at Hackaday, with everything from swimming pools to chicken coops rigged for app control and datalogging.

Continue reading “Have Alexa Open Your Garage Door”

Turning On Your Amplifier With A Raspberry Pi

Life is good if you are a couch potato music enthusiast. Bluetooth audio allows the playing of all your music from your smartphone, and apps to control your hi-fi give you complete control over your listening experience.

Not quite so for [Daniel Landau] though. His Cambridge Audio amplifier isn’t quite the latest generation, and he didn’t possess a handy way to turn it on and off without resorting to its infrared remote control. It has a proprietary interface of some kind, but nothing wireless to which he could talk from his mobile device.

His solution is fairly straightforward, which in itself says something about the technology available to us in the hardware world these days. He took a Raspberry Pi with the Home Assistant home automation package and the LIRC infrared subsystem installed, and had it drive an infrared LED within range of the amplifier’s receiver. Coupled with the Home Assistant app, he was then able to turn the amplifier on and off as desired. It’s a fairly simple use of the software in question, but this is the type of project upon which so much more can later be built.

Not so many years ago this comparatively easy project would have required a significant amount more hardware and effort. A few weeks ago [John Baichtal] took a look at the evolution of home automation technology, through the lens of the language surrounding the term itself.

Via Hacker News.

Home Automation: Evolution Of A Term

Home automation: for me the term recalls rich dudes in the ’80s who could turn off their garage lights with remote-control pads. The stereotype for that era was the more buttons your system had—even non-enabled ones—the more awesome it was, and by extension any luxury remote control had to be three times the size of any TV remote.

And it was a luxury–the hardware was expensive and most people couldn’t justify it. Kind of like the laser-disc player of home improvements. The technology was opaque to casual tinkering, it cost a lot to buy, and also was expensive to install.

The richie-rich stereotypes were reinforced with the technology seen in Bond movies and similar near-future flicks. Everything, even silly things, is motorized, with chrome and concrete everywhere. You, the hero, control everything in the house in the comfort of your acrylic half-dome chair. Kick the motorized blinds, dim the track lighting, and volume up the hi-fi!

This Moonraker-esque notion of home automation turned out to be something of a red herring, because home automation stopped being pretty forever ago; eventually it became available to everyone with a WiFi router in the form of Amazon Echo and Google Nest.

But the precise definition of the term home automation remains elusive. I mean, the essence of it. Let’s break it down.

Continue reading “Home Automation: Evolution Of A Term”

Ikea Tradfri Hacking

Smart lighting is all the rage right now. Sure, Phillips Hue is the giant player in the market, but there are plenty of ZigBee, Bluetooth, and WiFi light bulbs out there. Ikea–known for cheap furniture, meatballs, and waffles–is a recent addition to the field with their Tradfri system. Like most things from Ikea, they are effective and inexpensive. [Andreas] takes a Dremel to the controller and shows how to hack the system to use MQTT. You can check out the video below.

Once he had the device opened, the used the German Make magazine article we talked about earlier, to help understand what he had. Armed with the pinout, he was able to solder a wiring harness to the controller. He then connected a WeMos board. A little Arduino code later, and he was controlling the light with MQTT.

Continue reading “Ikea Tradfri Hacking”

Hijacking The Sonoff OTA Mechanism

ITEAD’s Sonoff line is a range of Internet-of-Things devices based around the ESP8266. This makes them popular for hacking due to their accessibility. Past projects have figured out how to reflash the Sonoff devices, but for [mirko], that wasn’t enough – it was time to reverse engineer the Sonoff Over-The-Air update protocol.

[mirko]’s motivation is simple enough – a desire for IoT devices that don’t need to phone home to the corporate mothership, combined with wanting to avoid the labor of cracking open every Sonoff device to reflash it with wires like a Neanderthal. The first step involved connecting the Sonoff device to WiFi and capturing the traffic. This quickly turned up an SSL connection to a remote URL. This was easily intercepted as the device doesn’t do any certificate validation – but a lack of security is sadly never a surprise on the Internet of Things.

After capturing the network traffic, [mirko] set about piecing together the protocol used to execute the OTA updates. After a basic handshake between client and server, the server can ask the client to take various actions – such as downloading an updated firmware image.  After determining the messaging format, [mirko] sought to create a webserver in Python to replicate this behaviour.

There are some pitfalls – firmware images need to be formatted slightly differently for OTA updates versus the usual serial upload method, as this process leaves the stock bootloader intact. There’s also the split-partition flash storage system to deal with, which [mirko] is still working on.

Nevertheless, it’s great to see hackers doing what they do best – taking control over hardware and software to serve their own purposes. To learn more, why not check out how to flash your Sonoff devices over serial? They’re just an ESP8266 inside, after all.

Google Home Meets ESP8266

[Luc Volders] is building his own smart house with the help of Google Home and an ESP-8266. Inspired by the house computers from the TV show, Eureka [Luc] created an IoT ecosystem using a mix of off the shelf devices and open source software.

There are about a thousand ways to create a DIY smart home these days. All of them involve setting up a command receiver (like Amazon’s Echo or Google Home), some sort of cloud connection, and an end device controller. This can get complex for the beginner. [Luc’s] article is great because he walks is through each step tutorial style. He even keeps things simple by programming the ESP8266 using BASIC with ESP-BASIC.

[Luc] uses If This Then That (IFTT) as his cloud service. IFTT is the glue between Google’s cloud service and the ESP8266 connected to his home WiFi network. Speaking of which, [Luc] shows how to set up port forwarding on the router so all accesses to port 8085 go to the ESP8266. Not exactly strong security – but it’s better than opening the entire home network.

You don’t need a real Google home device for this hack. You can build your own with a Raspberry Pi. Once that is set up you can do everything from turning on lights to watering your lawn.

Continue reading “Google Home Meets ESP8266”

The Internet Of Rice Cookers

You’d be forgiven for thinking this was going to be an anti-IoT rant: who the heck needs an IoT rice cooker anyway? [Microentropie], that’s who. His rice cooker, like many of the cheapo models, terminates heating by detecting a temperature around 104° C, when all the water has boiled off. But that means the bottom of the rice is already dried out and starting to get crispy. (We love the crust! But this hack is not for us. This hack is for [Microentropie].)

So [Microentropie] added some relays, a temperature sensor, and an ESP8266 to his rice cooker, creating the Rice Cooker 2.0, or something. He tried a few complicated schemes but was unwilling to modify any of the essential safety features of the cooker. In the end [Microentropie] went with a simple time-controlled cooking cycle, combined with a keep-warm mode and of course, notification of all of this through WiFi.

There’s a lot of code making this simple device work. For instance, [Microentropie] often forgets to press the safety reset button, so the ESP polls for it, and the web interface has a big red field to notify him of this. [Microentropie] added a password-protected login to the rice cooker as well. Still, it probably shouldn’t be put on the big wide Internet. The cooker also randomizes URLs for firmware updates, presumably to prevent guests in his house from flashing new firmware to his rice cooker. There are even custom time and date classes, because you know you don’t want your rice cooker using inferior code infrastructure.

In short, this is an exercise in scratching a ton of personal itches, and we applaud that. Next up is replacing the relays with SSRs so that the power can be controlled with more finesse, adding a water pump for further automation, and onboard data logging. Overkill, you say? What part of “WiFi-enabled rice cooker” did you not understand?