Here’s the thing about radio signals. There is wild and interesting stuff just getting beamed around all over the place. Phrased another way, there are beautiful signals everywhere for those with ears to listen. We go about our lives oblivious to most of them, but some dedicate their time to teasing out and capturing these transmissions.
David Prutchi is one such person. He’s a ham radio enthusiast that dabbles in receiving microwave signals sent from probes in deep space. What’s even better is that he came down to Supercon 2023 to tell us all about how it’s done!
Humanity has been a spacefaring species for barely sixty years now. In that brief time, we’ve fairly mastered the business of putting objects into orbit around the Earth, and done so with such gusto that a cloud of both useful and useless objects now surrounds us. Communicating with satellites in Earth orbit is almost trivial; your phone is probably listening to at least half a dozen geosynchronous GPS birds right now, and any ham radio operator can chat with the astronauts aboard the ISS with nothing more that a $30 handy-talkie and a homemade antenna.
But once our spacecraft get much beyond geosynchronous orbit, communications get a little dicier. The inverse square law and the limited power budget available to most interplanetary craft exact a toll on how much RF energy can be sent back home. And yet the science of these missions demands a reliable connection with enough bandwidth to both control the spacecraft and to retrieve its precious cargo of data. That requires a powerful radio network with some mighty big ears, but as we’ll see, NASA isn’t the only one listening to what’s happening out in deep space. Continue reading “Serious DX: The Deep Space Network”→
This week, Popular Mechanics published cutaway diagrams of ships that will be seen in Star Trek: Beyond, released later this month. This is your cue for spoilers for the remainder of this paragraph. The USS Franklin looks suspiciously like – and was likely built after – the NX-01, the titular ship of Star Trek: Enterprise. The Abrams-verse Franklin was the first Warp 4 ship, yet the prime universe NX-01 was the first Warp 5 ship, with previous ships having trouble reaching Warp 2. We must now consider the Abrams-verse Trek is not a parallel universe to prime-universe Trek and should therefore be considered a completely separate canon (yes, even the destruction of Vulcan. If you see the new Star Trek movie, the NX-01 launched in 2151, and your suggested viewing beforehand is ST:ENT, S02E24, First Flight.
Walk into a dollar store, and you’ll find stupid solar powered electronic flower pots. They’re bits of plastic that shake a plastic flower back and forth when placed in the sun. They’re selling millions, and I have no idea why. [Scott] put a jolly wrencher on one of these flower pots. Really, this is just an exercise in 3D printing, but [Scott] printed the jolly wrencher. We don’t see a lot of that, due to how difficult it is to render the wrencher in OpenSCAD.
In just a few hours, Juno will perform an insertion burn around Jupiter. Does this mean pretty pictures? Not quite yet. This is the closest a spacecraft has ever gotten to Jupiter, and over thirty or forty orbits, Juno will fly between Jupiter’s massive radiation belts. Here’s the NASA trailer.
This video recently caught the Internet’s attention. It’s squares and circles that when put next to a mirror look like circles and squares. Yes, it’s weird. People have 3D printers, so of course these ambiguous objects were quickly reverse engineered and printed. Here’s how they work
Roland’s Alpha Juno 2 is an analog, polyphonic synth made in the mid-80s. While it isn’t as capable as the massive synths made around that time, it was very influential synth for the techno scenes of the late 80s and early 90s.
[Jeroen] is lucky enough to have one of these synths, but like all equipment of this era, it’s showing its age. He wanted to replace the character LCD in his Alpha Juno 2 with an OLED display. The original character LCD was compatible with the Hitachi HD44780 protocol, and still today OLEDs can speak this format. What should have been an easy mod turned into editing hex values on the EEPROM, but he still got it to work.
While the original character LCD could display one line of 16 characters, the ROM in the synth didn’t know this. Instead, the display was organized as a 2×8 display in software, with line one starting at address 0h, and line two starting at 40h. For a drop-in replacement, [Jeroen] would need a display the characters organized in this weird 2×8 format. None exist, but he does have a hex editor and an EEPROM burner.
With the Alpha Juno’s firmware in hand thanks to someone who does a few firmware hacks to this synth, [Jeroen] had everything he needed. All that was left to do was going through the code and replace all the references to the second line of the character LCD.
After burning and installing the new ROM, the OLED display was a drop-in replacement. That meant getting rid of the whiney EL backlight in the original display, and making everything nice and glowy for a few nights on a dark stage.
[Steve] drives spacecraft for a living. As an engineer at the Jet Propulsion Laboratory, he’s guided probes to comets, asteroids, Mars, and Jupiter, figured out what happens when telemetry from these probes starts looking weird, and fills the role of the Space Hippy whenever NASA needs some unofficial PR.
Like most people who are impossibly cool, [Steve]’s career isn’t something he actively pursued since childhood. Rather, it’s something that fell in his lap. With qualifications like building a robotic computer to typewriter interface, a custom in-car navigation system in the late 80s, and a lot of work with an Amiga, we can see where [Steve] got his skills.
The earliest ‘hack’ [Steve] can remember was just that – an ugly, poorly welded sidecar for his bicycle made in his early teens. From there, he graduated to Lasertag landmines, Tesla coils, and building camera rigs, including a little bit of work on Octopussy, and a rig for a Miata. It helps when your dad is a cinematographer, it seems.
In college, [Steve] used his experience with 6502 assembler to create one of the first computerized lighting controllers (pre-DMX). After reading a biography on [Buzz Aldrin], [Steve] realized doing his thesis on orbital rendezvous would at least be interesting, if not an exceptionally good way to get the attention of NASA.
Around this time, [Steve] ran into an engineering firm that was developing, ‘something like Mathematica’ for the Apple II, and knowing 6502 assembly got him in the door. This company was also working to get the GPS constellation up and running, and [Steve]’s thesis on orbital mechanics eventually got him a job at JPL.
There’s several lifetimes worth of hacks and builds [Steve] went over at the end of his talk. The highlights include a C64 navigation system for a VW bug, a water drop high voltage machine, and a video editing system built from a few optical encoders. This experience with hacking and modding has served him well at work, too: when the star sensor for Deep Space 1 failed, [Steve] and his coworkers used the science camera as a stand in navigation aid.
One final note: Yes, I asked [Steve] if he played Kerbal Space Program. He’s heard of it, but hasn’t spent much time in it. He was impressed with it, though, and we’ll get a video of him flying around the Jool system eventually.