A LoRa Rain Gauge From The Ground Up

It’s a fair bet that most of us have a ton of wireless doo-dads around the house, from garage door remotes to wireless thermometers. Each of these gadgets seems to have its own idea about how to encode data and transmit it, all those dedicated receivers seem wasteful. Wouldn’t it be great to use existing RF infrastructure to connect your wireless stuff?

[Malte Pöggel] thinks so, and this LoRa rain gauge is the result. The build starts with a commercially available rain transmitter, easily found on the cheap as an accessory for a wireless weather station and already equipped with an ISM band transmitter. The rain-collection funnel and tipping-bucket mechanism were perfectly usable, and the space vacated by the existing circuit boards left plenty of room to play, not to mention a perfectly usable battery compartment. [Malte] used an ATmega328P microcontroller to count the tipping of the bucket, either through the original reed switch or via Hall Effect or magnetoresistive sensors. An RFM95W LoRa module takes care of connecting into [Malte]’s LoRaWAN gateway, and there’s an option to add a barometric pressure and temperature sensor, either by adding the BMP280 chip directly to the board or by adding a cheap I2C module, for those who don’t relish SMD soldering.

[Malte] put a lot of work into power optimization, and it shows. A pair of AA batteries should last at least three years, and the range is up to a kilometer—far more than the original ISM connection could have managed. Sure, this could have been accomplished with a LoRa module and some jumper wires, but this looks like a fantastic way to get your feet wet in LoRa design. You could even print your own tipping bucket collector and modify the electronics if you wanted.

Recreating Unobtainium Weather Station Sensors

Imagine you own a weather station. Then imagine that after some years have passed, you’ve had to replace one of the sensors multiple times. Your new problem is that the sensor is no longer available. What does a hacker like [Luca] do? Build a custom solution, of course!

[Luca]’s work concerns the La Crosse WS-9257F-IT weather station, and the repeat failures of the TX44DTH-IT external sensor. Thankfully, [Luca] found that the weather station’s communication protocol had been thoroughly reverse-engineered by [Fred], among others. He then set about creating a bridge to take humidity and temperature data from Zigbee sensors hooked up to his Home Assistant hub, and send it to the La Crosse weather station. This was achieved with the aid of a SX1276 LoRa module on a TTGO LoRa board. Details are on GitHub for the curious.

Luca didn’t just work on the Home Assistant integration, though. A standalone sensor was also developed, based on the Xiao SAMD21 microcontroller board and a BME280 temperature, pressure, and humidity sensor. It too can integrate with the Lacrosse weather station, and proved useful for one of [Luca’s] friends who was in the same boat.

Ultimately, it sucks when a manufacturer no longer supports hardware that you love and use every day. However, the hacking community has a way of working around such trifling limitations. It’s something to be proud of—as the corporate world leaves hardware behind, the hackers pick up the slack!

The Vecdec Cyberdeck Is More Than A Pretty Case

A common criticism we hear of cyberdecks is that functionality too often takes a backseat to aesthetics — in other words, they might look awesome, but they aren’t the kind of thing you’re likely to use a daily driver. It’s not an assessment that we necessarily disagree with, though we also don’t hold it against anyone if they’re more interested in honing their build’s retro-futuristic looks than its computational potential.

That said, when a build comes along that manages to strike a balance between style and function, we certainly take notice. The vecdec, built by [svenscore] is a perfect example. We actually came across this one in the Desert of the Real, also known as the outskirts of Philadelphia, while we stalked the chillout room at JawnCon 0x1. When everyone else in the room is using a gleaming MacBook or a beat-up ThinkPad, its wildly unconventional design certainly grabs your attention. But spend a bit of time checking the hardware out and chatting with its creator, and you realize it’s not just some cyberpunk prop.

Continue reading “The Vecdec Cyberdeck Is More Than A Pretty Case”

Tiny LoRa GPS Node Relies On ESP32

Sometimes you need to create a satellite navigation tracking device that communicates via a low-power mesh network. [Powerfeatherdev] was in just that situation, and they whipped up a particularly compact solution to do the job.

As you might have guessed based on the name of its creator, this build is based around the ESP32-S3 PowerFeather board. The PowerFeather has the benefit of robust power management features, which makes it perfect for a power-sipping project that’s intended to run for a long time. It can even run on solar power and manage battery levels if so desired. The GPS and LoRa gear is all mounted on a secondary “wing” PCB that slots directly on to the PowerFeather like a Arduino shield or Raspberry Pi HAT. The whole assembly is barely larger than a AA battery.

It’s basically a super-small GPS tracker that transmits over LoRa, while being optimized for maximum run time on limited power from a small lithium-ion cell. If you’re needing to do some long-duration, low-power tracking task for a project, this might be right up your alley.

LoRa is a useful technology for radio communications, as we’ve been saying for some time. Meanwhile, if you’ve got your own nifty radio comms build, or anything in that general milleu, don’t hesitate to drop us a line!

WiFi Meets LoRa For Long Range

What do you get when you cross WiFi and LoRa? Researchers in China have been doing this, and they call the result WiLo. They claim to get reliable connections over about half a kilometer. Typical WiFi runs 40 to 60 meters, barring any Pringle’s cans or other exotic tricks.

According to [Michelle Hampson] writing in IEEE Spectrum, the researchers manipulated Wi-Fi’s OFDM multiplexing to emulate LoRa’s chirp-spreading signal. The advantage is that existing WiFi hardware can use the protocol to increase range.

Continue reading “WiFi Meets LoRa For Long Range”

Decoding Meshtastic With GNU Radio

Meshtastic is a way to build mesh networks using LoRa that is independent of cell towers, hot spots or traditional repeaters. It stands to reason that with an SDR and GNU Radio, you could send and receive Meshtastic messages. That’s exactly what [Josh Conway] built, and you can see a video about the project, Meshtastic_SDR, below. The video is from [cemaxecuter], who puts the library through its paces.

For hardware, the video uses a Canary I as well as the WarDragon software-defined radio kit which is an Airspy R2 and a mini PC running Dragon OS — a Linux distribution aimed at SDR work —  in a rugged case. GNU Radio, of course, uses flows which are really just Python modules strung together with a GUI.

Continue reading “Decoding Meshtastic With GNU Radio”

Passive Diplexer Makes One Antenna Act Like Two

Stay in the amateur radio hobby long enough and you might end up with quite a collection of antennas. With privileges that almost extend from DC to daylight, one antenna will rarely do everything, and pretty soon your roof starts to get hard to see through the forest of antennas. It may be hell on curb appeal, but what’s a ham to do?

One answer could be making one antenna do the work of two, as [Guido] did with this diplexer for dual APRS setups. Automatic Packet Reporting System is a packet radio system used by hams to transmit telemetry and other low-bandwidth digital data. It’s most closely associated with the 2-meter ham band, but [Guido] has both 2-meter (144.8-MHz) and 70-cm LoRa (433.775-MHz) APRS IGates, or Internet gateway receivers. His goal was to use a single broadband discone antenna for both APRS receivers, and this would require sorting the proper signals from the antenna to the proper receiver with a diplexer.

Note that [Guido] refers to his design as a “duplexer,” which is a device to isolate and protect a receiver from a transmitter when they share the same antenna — very similar to a diplexer but different. His diplexer is basically a pair of filters in parallel — a high-pass filter tuned to just below the 70-cm band, and a low-pass filter tuned just above the top of the 2-m band. The filters were designed using a handy online tool and simulated in LTSpice, and then constructed in classic “ugly” style. The diplexer is all-passive and uses air-core inductors, all hand-wound and tweaked by adjusting the spacing of the turns.

[Guido]’s diplexer performs quite well — only a fraction of a dB of insertion loss, but 45 to 50 dB attenuation of unwanted frequencies — pretty impressive for a box full of caps and coils. We love these quick and dirty tactical builds, and it’s always a treat to see RF wizardry in action.