A Disc Shooter For When Rubber Bands Or Nerf Darts Aren’t Enough

There are times in everybody’s life when they feel the need to shoot at things in a harmless manner. For those moments there are rubber bands and Nerf darts, but even then they feel like mere toys. If that is the point at which you find yourself, then maybe [Austin]’s home-made electric disc shooter can help.

Operation of the shooter is simple enough. A stack of 3D-printed plastic discs is loaded into a tubular magazine, from which individual disks are nudged by a motor-driven cam controlled by the trigger. Once the disc leaves the magazine it reaches a vacuum cleaner belt driven by a much more powerful motor, that accelerates the disc to ejection velocity.

The video below the break shows the gun’s construction, as well as a sequence involving the destruction of plenty of balloons, soda cans, and food items. The 3D-printed ammunition seems to us to be the weak link as in our experience it is inevitable that there is a high ammunition loss rate with these type of weapons, but maybe [Austin] has a line on some cheap filament. Either way, his disc gun looks like the kind of toy that could provide an entertaining diversion for many readers.

Continue reading “A Disc Shooter For When Rubber Bands Or Nerf Darts Aren’t Enough”

You Probably Don’t Want To Find This Toilet In Your Washroom

Ok, this one is a bit bizarre, but in perfect keeping with the subject matter: a talking toilet ripped from the pages of the Captain Underpants children’s books. Hackaday.io user [hamblin.joe]’s county fair has a toilet decorating contest and at the suggestion of their neighbour’s son, [hamblin.joe] hatched a plan to automate the toilet using an Arduino in the fashion of the hero’s foes.

Two Arduinos make up this toilet’s brains, an Adafruit Wave Shield imbues it with sound capabilities, and a sonic wave sensor will trigger the toilet’s performance routine when someone approaches. A windshield wiper motor actuates the toilet bowl lid via a piece of flat iron bar connected to a punched angle bracket. Installing the motor’s mount was a little tricky, since it had to be precisely cut so it wouldn’t shift while in the toilet bowl. A similar setup opens the toilet tank’s lid, but to get it working properly was slightly more involved. Once that was taken care of there was enough room left over for a pair of 12V batteries and a speaker. Oh, and a pair of spooky eyes and some vicious looking teeth.

Continue reading “You Probably Don’t Want To Find This Toilet In Your Washroom”

“The Alarm Clock Ate My Duvet Cover, That’s Why I’m Late!”

Some people just won’t wake up. Alarm clocks don’t cut it, flashing lights won’t work, loud music just becomes the soundtrack of an impenetrable dream. Maybe an alarm clock that rudely yanks the covers off the bed will do the trick.

Or not, but [1up Living] decided to give it a go. His mechanism is brutally simple — a large barrel under the foot of the bed around which the warm, cozy bedclothes can wind. An alarm clock is rigged with a switch on the bell to tell an Arduino to wind the drum and expose your sleeping form to the harsh, cold world. To be honest, the fact that this is powered by a 2000-lb winch that would have little trouble dismembering anyone who got caught up in the works is a bit scary. But we understand that the project is not meant to be a practical solution to oversleeping; if it were, [1up Living] might be better off using the winch to pull the bottom sheet to disgorge the sleeper from the bed entirely.

Something gentler to suit your oversleeping needs might be this Neopixel sunrise clock to coax you out of bed naturally.

Continue reading ““The Alarm Clock Ate My Duvet Cover, That’s Why I’m Late!””

Wire-bots, Roll Out!

Designing and 3D-printing parts for a robot with a specific purpose is generally more efficient than producing one with a general functionality — and even then it can still take some time. What if you cut out two of those cumbersome dimensions and still produce a limited-yet-functional robot?

[Sebastian Risi] and his research team at the IT University of Copenhagen’s Robotics, Evolution, and Art Lab, have invented a means to produce wire-based robots. The process is not far removed from how industrial wire-bending machines churn out product, and the specialized nozzle is also able to affix the motors to the robot as it’s being produced so it’s immediately ready for testing.

A computer algorithm — once fed test requirements — continuously refines the robot’s design and is able to produce the next version in a quarter of an hour. There is also far less waste, as the wire can simply be straightened out and recycled for the next attempt. In the three presented tests, a pair of motors shimmy the robot on it’s way — be it along a pipe, wobbling around, or rolling about. Look at that wire go!

Continue reading “Wire-bots, Roll Out!”

Stalk Your Cats With A Browser-Controlled Robot

A good robot is always welcome around here at Hackaday, and Hackaday.io user [igorfonseca83]’browser-controlled ‘bot s is no exception. Felines beware.

[igorfonseca83] — building on another project he’s involved in — used simple materials for the robot itself, but you could use just about anything. His goal for this build was to maximize accessibility in terms of components and construction using common tools.

An Arduino Uno gets two D/C motors a-driving using an H-bridge circuit — granting independent control the wheels — an ESP8266 enabling WiFi access, with power provided by a simple 5V USB power bank. [igorfonseca83] is using an Android smartphone to transmit audio and video data; though this was mostly for convenience on his part, a Raspberry Pi and camera module combo as another great option!

Continue reading “Stalk Your Cats With A Browser-Controlled Robot”

A Beverage Cooler That Comes To You!

Feel like taking a long walk, but can’t be bothered with carrying your drinks? Have no fear, this  “Follow Me” Cooler Bot is here!

Really just a mobile platform with a cooler on top, the robot connects to smartphone via Bluetooth, following it using GPS. Making the platform involves a little woodworking skill, and an aluminium hub with a 3D-printed hub adapter connects the motors to a pair 6″ rubber wheels with a swivel caster mounted at the rear. A pocket in the platform’s base houses the electronics.

The Arduino Uno — via an L298n motor driver — controls two 12V DC, brushed and geared motors mounted with 3D printed brackets, while a Parallax PAM-7Q GPS Module in conjunction with an HMC 5883L compass help the robot keep its bearing. A duo of batteries power the motors and the electronics separately to prevent  any malfunctions.

Continue reading “A Beverage Cooler That Comes To You!”

An ExoArm For The Elderly

Prosthetic and assistive technologies have come have come a long way in recent years. When there are not only major medical research organizations, but individuals getting on board designing tools to improve the lives of others? That’s something special. Enter a homebrew essay into this field: ExoArm.

Attached to the body via what was available — in this case, the support harness for a gas-powered weed-eater — which distributes the load across the upper body and an Arduino for a brain, ExoArm designer [Kristjan Berce] has since faced roadblocks with muscle sensors meant to enable more instinctive control. So — for now — functionality is limited to a simple up and down motion controlled by two switches. It is worth noting that the down switch is currently mounted in such a way that when the user moves their arm down, the ExoArm follows suit, so there is some natural feel to using the arm in its present iteration.

Continue reading “An ExoArm For The Elderly”