Getting To Space Is Even Harder During A Pandemic

At this point, most of us are painfully aware of the restrictions that COVID-19 social distancing protocols have put on our daily lives. Anyone who can is working from home, major events are canceled, non-essential businesses are closed, and travel is either strongly discouraged or prohibited outright. In particularly hard hit areas, life and commerce has nearly ground to a halt with no clear end date in sight.

Naturally, there are far reaching consequences for this shutdown beyond what’s happening on the individual level. Large scale projects are also being slowed or halted entirely, as there’s only so much you can do remotely. That’s especially true when the assembly of hardware is concerned, which has put some industries in a particularly tight spot. One sector that’s really feeling the strain is aerospace. Around the world, space agencies are finding that their best laid plans are suddenly falling apart in the face of COVID-19.

In some cases it’s a minor annoyance, requiring nothing more than some tweaks to procedures. But when the movements of the planets are concerned, a delay of weeks or months changes everything. While things are still changing too rapidly to make an exhaustive list, we already know of a few missions that are being impacted in these uncertain times.

Continue reading “Getting To Space Is Even Harder During A Pandemic”

NASA Spinoff Prints Electronics

NASA says that Electronic Alchemy’s eForge 3D printer is another space program spinoff. The printer looks a lot like a conventional 3D printer but unlike its mundane cousin it can print sensors, lights, and other electronic components. It does that by using one of six or eight different materials.

Six of the eight spools each have some sort of electronic property. According to the company they have conductive filament, resistive filament, insulating filament, capacitive filament, and both N- and P-type semiconductors.

Continue reading “NASA Spinoff Prints Electronics”

Phantom Express: The Spaceplane That Never Was

Even for those of us who follow space news closely, there’s a lot to keep track of these days. Private companies are competing to develop new human-rated spacecraft and assembling satellite mega-constellations, while NASA is working towards a return the Moon and the first flight of the SLS. Between new announcements, updates to existing missions, and literal rocket launches, things are happening on a nearly daily basis. It’s fair to say we haven’t seen this level of activity since the Space Race of the 1960s.

With so much going on, it’s no surprise that not many people have heard of the XS-1 Phantom Express. A project by the United States Defense Advanced Research Projects Agency (DARPA), the XS-1 was designed to be a reusable launch system that could put small payloads into orbit on short notice. Once its mission was complete, the vehicle was to return to the launch site and be ready for re-flight in as a little as 24 hours.

Alternately referred to as the “DARPA Experimental Spaceplane”, the vehicle was envisioned as being roughly the size of a business jet and capable of carrying a payload of up to 2,300 kilograms (5,000 pounds). It would take off vertically under rocket power and then glide back to Earth at the end of the mission to make a conventional runway landing. At $5 million per flight, its operating costs would be comparable with even the most aggressively priced commercial launch providers; but with the added bonus of not having to involve a third party in military and reconnaissance missions which would almost certainly be classified in nature.

Or at least, that was the idea. Flight tests were originally scheduled to begin this year, but earlier this year prime contractor Boeing abruptly dropped out of the program. Despite six years in development and over $140 million in funding awarded by DARPA, it’s now all but certain that the XS-1 Phantom Express will never get off the ground. Which is a shame, as even in a market full of innovative launch vehicles, this unique spacecraft offered some compelling advantages.

Continue reading “Phantom Express: The Spaceplane That Never Was”

Interplanetary Whack-A-Mole: NASA’s High-Stakes Rescue Plan For InSight Lander’s Science Mission

People rightly marvel at modern surgical techniques that let surgeons leverage the power of robotics to repair the smallest structures in the human body through wounds that can be closed with a couple of stitches. Such techniques can even be applied remotely, linking surgeon and robot through a telesurgery link. It can be risky, but it’s often a patient’s only option.

NASA has arrived at a similar inflection point, except that their patient is the Mars InSight lander, and the surgical suite is currently about 58 million kilometers away. The lander’s self-digging “mole” probe needs a little help getting started, so they’re planning a high-stakes rescue attempt that would make the most seasoned telesurgeon blanch: they want to use the lander’s robotic arm to press down on the mole to help it get back on track.

Continue reading “Interplanetary Whack-A-Mole: NASA’s High-Stakes Rescue Plan For InSight Lander’s Science Mission”

Expanding, And Eventually Replacing, The International Space Station

Aboard the International Space Station (ISS), humanity has managed to maintain an uninterrupted foothold in low Earth orbit for just shy of 20 years. There are people reading these words who have had the ISS orbiting overhead for their entire lives, the first generation born into a truly spacefaring civilization.

But as the saying goes, what goes up must eventually come down. The ISS is at too low of an altitude to remain in orbit indefinitely, and core modules of the structure are already operating years beyond their original design lifetimes. As difficult a decision as it might be for the countries involved, in the not too distant future the $150 billion orbiting outpost will have to be abandoned.

Naturally there’s some debate as to how far off that day is. NASA officially plans to support the Station until at least 2024, and an extension to 2028 or 2030 is considered very likely. Political tensions have made it difficult to get a similar commitment out of the Russian space agency, Roscosmos, but its expected they’ll continue crewing and maintaining their segment as long as NASA does the same. Afterwards, it’s possible Roscosmos will attempt to salvage some of their modules from the ISS so they can be used on a future station.

This close to retirement, any new ISS modules would need to be designed and launched on an exceptionally short timescale. With NASA’s efforts and budget currently focused on the Moon and beyond, the agency has recently turned to private industry for proposals on how they can get the most out of the time that’s left. Unfortunately several of the companies that were in the running to develop commercial Station modules have since backed out, but there’s at least one partner that still seems intent on following through: Axiom.

With management made up of former astronauts and space professionals, including NASA’s former ISS Manager Michael Suffredini and Administrator Charles Bolden, the company boasts a better than average understanding of what it takes to succeed in low Earth orbit. About a month ago, this operational experience helped secure Axiom’s selection by NASA to develop a new habitable module for the US side of the Station by 2024.

While the agreement technically only covers a single module, Axiom hasn’t been shy about their plans going forward. Once that first module is installed and operational, they plan on getting NASA approval to launch several new modules branching off of it. Ultimately, they hope that their “wing” of the International Space Station can be detached and become its own independent commercial station by the end of the decade.

Continue reading “Expanding, And Eventually Replacing, The International Space Station”

Hackaday Podcast 054: Xenomorph Cookies, 101 Uses For Hot Glue, Rolling Robots, And A Clippy Computer

Hackaday editors Elliot Williams and Mike Szczys reflect on great hacks of the past few days. Strain relief is something every electronics geek encounters and there’s a spiffy way to make your hot-glue look like a factory connector. There’s something in the air and it seems to be recreating early computers. Did you know astronauts are baking cookies they’re forbidden to eat? And did you hear about the 3D printer that’s being fed oil from the deep fryer?

Take a look at the links below if you want to follow along, and as always tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 054: Xenomorph Cookies, 101 Uses For Hot Glue, Rolling Robots, And A Clippy Computer”