NASA’s Curiosity Mars Rover Gets A Major Software Upgrade

Although the Curiosity rover has been well out of the reach of human hands since it touched down on Mars’ surface in 2012, this doesn’t mean that it isn’t getting constant upgrades. Via its communication link with Earth it receives regular firmware updates, with the most recent one being the largest one since 2016. In addition to code clean-up and small tweaks to message formats, this new change should make Curiosity both smarter and have its wheels last longer.

The former helps to avoid the long idle times between navigating, as unlike its younger sibling, Curiosity does not have the dedicated navigation computer for more autonomous driving. Although it won’t make the 11-year old rover as nimble as its sibling, it should shorten these pauses and allow for more navigating and science to be done. Finally, the change to reduce wear on the wheels is fairly simple, but should be rather effective: this affects the amount of steering that Curiosity needs to do while driving in an arc.

With these changes in place, Curiosity should be all ready to receive its newest sibling as it arrives in a few years along with even more Mars helicopters.

3D Print For Extreme Temperatures (But Only If You’re NASA)

At the level pursued by many Hackaday readers, the advent of affordable 3D printing has revolutionised prototyping, as long as the resolution of a desktop printer is adequate and the part can be made in a thermoplastic or resin, it can be in your hands without too long a wait. The same has happened at a much higher level, but for those with extremely deep pockets it extends into exotic high-performance materials which owners of a desktop FDM machine can only dream of.

NASA for example are reporting their new 3D printable nickel-cobalt-chromium alloy that can produce extra-durable laser-sintered metal parts that van withstand up to 2000 Fahrenheit, or 1033 Celcius for non-Americans. This has obvious applications for an organisation producing spacecraft, so naturally they are excited about it.

The alloy receives some of its properties because of its oxide-dispersion-strengthened composition, in which grains of metal oxide are dispersed among its structure. We’re not metallurgists here at Hackaday, but we understand that the inconsistencies in the layers of metal atoms caused by the oxides in the crystal structure of the alloy leads to a higher energy required for the structure to shear.

While these particular materials might never be affordable for us mere mortals to play with, NASA’s did previously look into how it could greatly reduce the cost of high-temperature 3D printing by modifying an existing open source machine.

The Freedom To Fail

When you think of NASA, you think of high-stakes, high-cost, high-pressure engineering, and maybe the accompanying red tape. In comparison, the hobby hacker has a tremendous latitude to mess up, dream big, and generally follow one’s bliss. Hopefully you’ll take some notes. And as always with polar extremes, the really fertile ground lies in the middle.

[Dan Maloney] and I were thinking about this yesterday while discussing the 50th flight of Ingenuity, the Mars helicopter. Ingenuity is a tech demo, carrying nothing mission critical, but just trying to figure out if you could fly around on Mars. It was planned to run for five flights, and now it’s done 50.

The last big tech demo was the Sojourner Rover. It was a small robotic vehicle the size of a microwave oven that they hoped would last seven days. It went for 85, and it gave NASA the first taste of success it needed to follow on with 20 years of Martian rovers.

Both of these projects were cheap, by NASA standards, and because they were technical demonstrators, the development teams were allowed significantly more design freedom, again by NASA standards.

None of this compares to the “heck I’ll just hot-air an op-amp off an old project” of weekend hacking around here, but I absolutely believe that a part of the tremendous success of both Sojourner and Ingenuity were due to the risks that the development teams were allowed to take. Creativity and successful design thrives on the right blend of constraint and freedom.

Will Ingenuity give birth to a long series of flying planetary rovers as Sojourner did for her rocker-bogie based descendants? Too early to tell. But I certainly hope that someone within NASA is noticing the high impact that these technical demonstrator projects have, and also noting why. The addition of a little bit of hacker spirit to match NASA’s professionalism probably goes a long way.

NASA’s Ingenuity Mars Helicopter Completes 50th Flight

While NASA’s Perseverance rover brought an array of impressive scientific equipment to the surface of Mars, certainly its most famous payload is the stowaway helicopter Ingenuity. Despite being little more than a restricted-budget experiment using essentially only off-the-shelf components that you can find in your smartphone and e-waste drawer, the tenacious drone managed to complete its fiftieth flight on April 13 — just days before the two year anniversary of its first flight, which took place on April 19th of 2021.

Engineers hoped that Ingenuity would be able to show that a solar-powered drone could function in the extremely thin atmosphere of Mars, but the experiment ended up wildly exceeding expectations.  No longer a simple technology demonstrator, the helicopter has become an integral part of Perseverance’s operations. Through its exploratory flights Ingenuity can scout ahead, picking the best spots for the much slower rover, with rough terrain only becoming a concern when it’s time to land.

Since leaving the relatively flat Jezero Crater floor on January 19th of 2023, Ingenuity has had to contend with significantly harsher terrain. Thanks to upgraded navigation firmware the drone is better to determine safe landing locations, but each flight remains a white-knuckle event. This is also true for each morning’s wake-up call. Although the rover is powered and heated continuously due to its nuclear power source, Ingenuity goes into standby mode overnight, after which it must re-establish its communication with the rover.

Though there’s no telling what the future may hold for Ingenuity, one thing is certain — its incredible success will shape upcoming missions. NASA is already looking at larger, more capable drones to be sent on future missions, which stand to help us explore the Red Planet planet faster than ever. Not a bad for a flying smartphone.

Continue reading “NASA’s Ingenuity Mars Helicopter Completes 50th Flight”

NASA Help Wanted: Ham Radio Operators Please Apply

NASA’s been recruiting citizen scientists lately, and their latest call is looking for help from ham radio operators. They want you to make and report radio contacts during the 2023 and 2024 North American eclipses. From their website:

Communication is possible due to interactions between our Sun and the ionosphere, the ionized region of the Earth’s atmosphere located roughly 80 to 1000 km overhead. The upcoming eclipses (October 14, 2023, and April 8, 2024) provide unique opportunities to study these interactions. As you and other HamSCI members transmit, receive, and record signals across the radio spectrum during the eclipse, you will create valuable data to test computer models of the ionosphere.

The upcoming eclipses are in October of this year and in April 2024, so you have some time to get your station in order. According to NASA, “It will be a fun, friendly event with a competitive element.” So if you like science, space, or contesting, it sounds like you’ll be interested. Right now, the big event is the Solar Eclipse QSO Party. There will also be a signal spotting challenge and some measurements of WWV, CHU, AM broadcast stations, and measurements of the ionosphere height. There will also be some sort of very low-frequency event. Details on many of these events are still pending.

Hams, of course, have a long history of experimenting with space. They routinely bounce signals off the moon. They also let radio signals bounce off the trails of ionized gas behind meteors using special computer programs.

NASA Help Wanted: Telescope Optional

If you’ve ever wanted to work for NASA, here’s your chance. Well, don’t expect a paycheck or any benefits, but the Agency is looking for volunteers to help process the huge amount of exoplanet data with their Exoplanet Watch program. If you have a telescope, you can even contribute data to the project. But if your telescope is in the back closet, you can process data they’ve collected over the years.

You might think the only way to contribute with a telescope is to have a mini-observatory in your backyard, but that’s not the case. According to NASA, even a six-inch telescope can detect hundreds of exoplanet transits using their software. You might not get paid, but the program’s policy requires that the first paper to use work done by program volunteers will receive co-author credit on the paper. Not too shabby!

Continue reading “NASA Help Wanted: Telescope Optional”

Hackaday Links Column Banner

Hackaday Links: November 20, 2022

Lots of space news this week, with the big story being that Artemis I finally blasted off for its trip to the Moon. It was a spectacular night launch, with the SLS sending the crew-rated but vacant — well, mostly vacant — Orion spacecraft on a week-ish long trip to the Moon, before spending a couple of weeks testing out a distant retrograde orbit. The mission is already returning some stunning images, and the main mission goal is to check out the Orion spacecraft and everything needed for a crewed Artemis II lunar flyby sometime in 2024. If that goes well, Artemis III will head up in 2025 with a crew of four to put the first bootprints on the Moon in over 50 years.

Of course, like the Apollo missions before it, a big part of the crewed landings of the Artemis program will likely be the collection and return of more lunar rock and soil samples. But NASA likes to hedge its bets, which is perhaps why they’ve announced an agreement to purchase lunar regolith samples from the first private company to send a lander to the Moon. The Japanese start-up behind this effort is called ispace, and they’ve been issued a license by the Japanese government to transfer samples collected by its HAKUTO-R lander to NASA. Or rather, samples collected on the lander — the contract is for NASA to take possession of whatever regolith accumulates on the HAKUTO-R’s landing pads. And it’s not like ispace is going to return the samples — the lander isn’t designed to ever leave the lunar surface. The whole thing is symbolic of the future of space commerce, which is probably why NASA is only paying $5,000 for the dirt.

Continue reading “Hackaday Links: November 20, 2022”