Radio Emissions Over Sunspots Challenge Models Of Stellar Magnetism

Sustained radio emissions originating from high over a sunspot are getting researchers thinking in new directions. Unlike solar radio bursts — which typically last only minutes or hours — these have persisted for over a week. They resemble auroral radio emissions observed in planetary magnetospheres and some stars, but seeing them from about 40,000 km above a sunspot is something new. They don’t seem tied to solar flare activity, either.

The signals are thought to be the result of electron cyclotron maser (ECM) emissions, which involves how electrons act in converging geometries of magnetic fields. These prolonged emissions challenge existing models and ideas about how solar and stellar magnetic processes unfold, and understanding it better could lead to a re-evaluation of existing astrophysical models. Perhaps even leading to new insights into the behavior of magnetic fields and energetic particles.

This phenomenon was observed from our very own sun, but it has implications for better understanding distant stellar bodies. Speaking of our sun, did you know it is currently in it’s 25th Solar Cycle? Check out that link for a reminder of the things the awesome power of our local star is actually capable of under the right circumstances.

Mystery Signal! Are You Ready For Your Mystery Signal?

Like many people [Dan Greenall] spent a lot of time in the 1970s listening to shortwave radio. While you often think of that as a hobby involving listening to broadcast stations, some people like to listen to other communications such as airliners, ships, military, and even spy stations. These days, if you hear a strange signal you are probably only one internet search away from identifying what it is. But back then, you had to depend on word-of-mouth or magazines to figure things like that out. [Dan] found a recording of a mysterious military-like signal he made in 1971 on 14.85 MHz. He decided that maybe now, all these years later, he could finally identify it.

The operator in the recording is counting and mentions “Midway Island,” famous for a World War II battle and part of the Leeward Islands in the Pacific. Thanks to the internet and the law of six degrees of separation, [Dan] found [Chuck Kinzer] who was a Midway Navy vet.

Continue reading “Mystery Signal! Are You Ready For Your Mystery Signal?”

A Brand-New Antique Radio

This beautiful little radio may look like an art deco relic from a hundred years ago, but it is actually from 2023. When [Craig Lindley] first saw this design on these very pages a few years ago, he just had to build one eventually. Turns out, all he had to do wait until he bought a laser cutter.

Built with hardware on hand, this radio runs on an ESP32 WROOM and uses an Adafruit VS1053 CODEC breakout. Song information is displayed on an SPI LCD display, and output comes via a 1/8″ jack. It can play songs streamed from Internet radio stations, [Craig]’s website, or directly from an SD card.

The lovely cabinet is made from 1/8″ Baltic birch, with a living hinge for a roof and sides. The amber shellac goes a long way toward establishing the antique aesthetic.

Not content with this cute radio, [Craig] went ahead and built a speaker system to go with it out of a pair of small, external laptop speakers. [Craig] says this project had a lot of ups and downs, but we are quite happy to see it come to fruition.

Do you have an antique radio you’d like to restore? Be sure to check out our guide.

DIY Loading Coil Shortens Antenna Lengths

A newly licensed amateur radio operator’s first foray into radios is likely to be a VHF or UHF radio with a manageable antenna designed for the high frequencies in these radio bands. But these radios aren’t meant for communicating more than a double-digit number of kilometers or miles. The radios meant for long-distance communication use antennas that are anything but manageable, as dipole antennas for the lowest commonly used frequencies can often be on the order of 50 meters in length. There are some tricks to getting antenna size down like folding the dipole in all manner of ways, but the real cheat code for reducing antenna size is to build a loading coil instead.

As [VA5MUD] demonstrates, a loading coil is simply an inductor that is placed somewhere along the length of the antenna which makes a shorter antenna behave as a longer antenna. In general, though, the inductor needs to be robust enough to handle the power outputs from the radio. There are plenty of commercial offerings but since an inductor is not much more than a coil of wire, it’s entirely within the realm of possibility to build them on your own. [VA5MUD]’s design uses a piece of PVC with some plastic spacers to wind some thick wire around, and then a customized end cap with screw terminals attached to affix the antenna and feedline to. Of course you’ll need to do a bit of math to figure out exactly how many turns of wire will be best for your specific situation, but beyond that it’s fairly straightforward.

It’s worth noting that the coil doesn’t have to be attached between the feedline and the antenna. It can be placed anywhere along the antenna, with the best performance typically being at the end of the antenna. Of course this is often impractical, so a center-loaded coil is generally used as a compromise. Coils like these are not too hard to wind by hand, but for smaller, lower-current projects it might be good to pick up a machine to help wind the coils instead.

Continue reading “DIY Loading Coil Shortens Antenna Lengths”

A Canned Ham Ham Antenna

If you’d have asked us for odds on whether you could successfully turn a canned ham into an amateur radio antenna, we’d have declined the offer. Now, having seen [Ben Eadie (VE6SFX)]’s “hamtenna” project, we’d look at just about any “Will it antenna?” project with a lot less skepticism than before.

To be painfully and somewhat unnecessarily clear about [Ben]’s antenna, the meat-like product itself is not in the BOM for this build, although he did use it as sustenance. Rather, it was the emptied and cleaned metal can that was the chief component of the build, along with a few 3D printed standoffs and the usual feedline and connectors. This is a slot antenna, a design [Ben] recently experimented with by applying copper foil tape to his car’s sunroof. This time around, the slot was formed by separating the top and bottom of the can using the standoffs and electrically connecting them with a strip of copper tape.

Connected to a stub of coax and a BNC connector, a quick scan with a NanoVNA showed a fantastic 1.26:1 SWR in the center of the 70-cm ham band, and a nearly flat response all the way across the band. Results may vary depending on the size of canned ham you sacrifice for this project; [Ben]’s can measured just about 35 cm around, a happy half-wavelength coincidence. And it actually worked in field tests — he was able to hit a local repeater and got good signal reports. All that and a sandwich? Not too shabby.

Continue reading “A Canned Ham Ham Antenna”

Antennas Can Be A Total Mystery

The real action in the world of ham radio is generally in the high frequency bands. Despite the name, these are relatively low-frequency bands by modern standards and the antenna sizes can get a little extreme. After all, not everyone can put up an 80-meter dipole, but ham radio operators have come up with a number of interesting ways of getting on the air anyway. The only problem is that a lot of these antennas don’t seem as though they should work half as well as they do, and [MIKROWAVE1] takes a look back on some of the more exotic radiators.

He does note that for a new ham radio operator it’s best to keep it simple, beginning work with a dipole, but there are still a number of options to keep the size down. A few examples are given using helically-wound vertical antennas or antennas with tuned sections of coaxial cable. From there the more esoteric antennas are explored, such as underground antennas, complex loops and other ways of making a long wire fit in a small space, and even simpler designs like throwing a weight with a piece of wire attached out the window of an apartment building.

While antenna theory is certainly a good start for building antennas, a lot of the design of antennas strays into artistry and even folklore as various hams will have successes with certain types and others won’t. It’s not a one-size-fits-all situation so the important thing is to keep experimenting and try anything that comes to mind as long as it helps get on the air. A good starting point is [Dan Maloney]’s $50 Ham Guide series, and one piece specifically dealing with HF antennas.

Continue reading “Antennas Can Be A Total Mystery”

ESP32 Drives Tiny FM Radio

Even as music streaming services and podcast apps dominate most of our listening time, it’s still a great idea to keep a radio on hand, if for nothing else than in emergency situations. After all, blizzards, hurricanes, and other natural disasters can quickly take out both home and mobile Internet access. If you’d like to have an FM radio with the absolute smallest footprint, take a look at this one built around an ESP32.

While the radio uses the ESP32 as the main control board hosted by a TTGO T-Display board which adds a 1.14 inch ST7789V IPS panel, it also makes use of the TEA5767 chip for handling the FM radio signals. As [Volos Projects] has it programmed, the ESP32 stores five preset channels which can be toggled using two buttons at the bottom of the device. There’s also some circuitry to handle output to headphones or a stereo.

For making the radio even smaller, some of the audio processing could be done on the ESP32 instead, although its much simpler to take a slightly larger footprint and offload this to an audio processing chip. Since the source code for this project is open, modifications could be done including adding seek/tune functionality instead of relying only on presets. If you’re not building this for emergencies, though, and your entire area is dominated by cookie cutter corporate-owned radio stations, an ESP32 with an internet connection is great for accessing better radio stations around the world.

Continue reading “ESP32 Drives Tiny FM Radio”