What’s Old Is New Again: A Linux PC From A Set Top Box

There was a time around two decades ago, when the new hotness was taking control of home routers to use as small Linux computers. An echo of this era lives on in the name of the OpenWrt minimal Linux distribution, in reference to the Linksys WRT54G router which started it all. Routers as small computers were displaced by small cheap Linux machines from the likes of Raspberry Pi, and the promise of discarded home network gear doing interesting stuff receded. Now it might just be back, as [Jasper Devreker] shows us an Android TV set-top box from a mobile carrier repurposed as a Linux computer that can even run a desktop environment.

The method starts as you might expect, by identifying a mystery connector as a debug serial port. This outputs all sorts of interesting boot information, but can be dropped into a uBoot shell. From here with a bit of effort the eMMC storage could be dumped, and from that the nature of the machine could be deduced. The CPU is an Amlogic quad core ARM Cortex-A53 SoC, which by a stroke of luck is a target for which an Armbian build is available. From there a Linux installation could be assembled, and even an AFCE desktop.

These boxes are handed out in the hundreds of thousands by home connectivity providers, so there’s value in this type of hack as they become available for experimenters. Perhaps it’s more useful as a small headless Linux machine than as a desktop, but we sense there are more machines to come in this line.

If you’d like a little bit of history on hackable Linux devices, have a read of one of our earliest posts featuring the Linksys WRT54G.

Dumb STB Gets Smart

[Vincent Deconinck] gave a fresh lease of life to an old set top box by adding a few Euro’s worth of hardware and some software smarts. The device in question is an old VOOcorder – a Cisco set-top box provided by VOO, his cable service provider in Belgium.

The VOOcorder doesn’t have any WiFi hardware or browser / app based interfaces. It’s a simple device controlled either via an IR remote or front panel buttons. [Vincent] added an ESP8266 and hooked it up to the IR receiver on the set-top box. He also set it up as an SPI slave to the front panel VFD display controller and connected it to the debug serial interface of the VOOcorder as well. The software, on the other hand, required a lot more work consisting of code running on the ESP itself, several HTML pages and JavaScript code for the browser front end, and a few scripts running in the background.

The result was bidirectional interactivity from within a browser, allowing him to send commands and receive status information as well as providing a user-friendly search interface. Further, his browser interface was integrated with information from the service providers website letting him do scheduling and recording of programs. The stuff that interested us is how he sniffed out the IR signals, figured out the SPI protocol used by the front panel controller, and implemented SPI-slave mode for the ESP8266. [Vincent] was surprised that such a cheap device could handle three distinct web servers while parsing two message streams without a hitch.

It’s a great hack showing us how to use super cheap electronics to upgrade and modernize old hardware. Check out the two videos after the break – showing a demo of the hack in action, and a walk through of the hardware modifications.

Continue reading “Dumb STB Gets Smart”

Android Set Top Box Lets You Stream And Record Via HDMI Input

While on the hunt for some hardware that would let him stream video throughout his LAN [danman] got a tip to try the €69 Tronsmart Pavo M9 (which he points out is a re-branded Zidoo X9). With some handy Linux terminal work and a few key pieces of software [danman] was able to get this going.

The Android box was able to record video from the HDMI input with pre-installed software found in the main menu as [danman] explains on his blog. File format options are available in the record menu, however none of them were suitable for streaming the video (which was the goal, remember?).

[danman] was able to poke around the system easily since these boxes come factory rooted (or at least the Tronsmart variant that [danman] uses in his demo did). Can anyone with a Zidoo X9 verify access to the root directory?

Long story short, [danman] was able to get the stream working over the network. Although he did have to make some changes to the stream command he was issuing over ssh. He finds the fix in the ffmpeg documentation which saves you the trouble of reading through it but you’ll have to check out his blog post for that (pro tip: he links to a sweet little .apk reverse engineering tool as well).

We’ve seen set top box hacks before, however, streaming and recording HDMI at this price is a rare find. If you’ve been hacking up the same tree let us know in the comments, and don’t forget to send in those tips!

Stepping Through Code On A Pace 4000 Set Top Box

[Lee] wrote in to tell us about a Set Top Box he hacked. Before the cable industry lawyers get out their flaming swords… he’s not stealing cable, or really doing much of anything. This is a hack just for the adventure and thrill of making someone else’s hardware design do your bidding without any kind of instructions.

He posted about the adventure in two parts. The first is finding the JTAG header and identifying the pins. Arduino to the rescue! No really, and this is the type of Arduino use we love. Using a package called JTAGenum the board becomes a quick tool for probing and identifying JTAG connections.

The image above shows a different piece of hardware. From looking at it we’re pretty sure this is a Bus Blaster which is specifically designed for JTAG debugging with ARM processors. This is the beginning of the second part of his documentation which involves code dumping and stepping through lines code (or instructions) using OpenOCD and GDB. It’s a chore to follow all that [Lee] discovered just to write his name to the display of the box. But we certainly found it interesting. The display has a convoluted addressing scheme. We assume that there are cascading shift registers driving the segments and that’s why it behaves the way it does. Take a look for yourself and let us know what you think in the comments.

Raspberry Pi Reaches Critical Mass As XBMC Hardware

For years I’ve been dreaming of a streaming media device that could just be stuck to the back of a television. Since XBMC has been far and away my favorite set-top box software, I’ve closely monitored hardware developments that can run that package. Now I think it’s time to declare that the Raspberry Pi has achieved the base specifications to be branded the XBMC device that rules them all.

There are a huge range of opinions on this topic, but please hear me out after the break to see what has brought me to this conclusion.

Continue reading “Raspberry Pi Reaches Critical Mass As XBMC Hardware”

Rooting A NeoTV Set Top Box From The Couch

The NeoTV is a set top box built by Netgear to compete with the likes of Roku. It streams video from the usual Internet sources like Netflix, Hulu Plus, and YouTube. [Craig] recently cracked his unit open, and in the process discovered that the NeoTV can be rooted using nothing but the remote control.

He starts with a hardware overview. The box houses a single-board ARM design with a 128MB of NAND and 256MB of RAM. The serial port is easy to find, but it does not provide a root shell (which often is one of the easiest ways to root a device). He next turns to poking around the unencrypted firmware update to see what he can learn. That’s how he discovered that the SSID value when connecting to WiFi is fed into a system() command. This glaring security hole lets you run just about anything you want on the device by issuing commands as fake SSID names. It’s just a matter of a little Linux know-how and [Craig] now has root access on his device.

Neuros Set Top Box With Wiimote

[youtube=http://www.youtube.com/watch?v=NUT0yb04q_A]

The Neuros set top box, called Link, is a disc-less computer running Ubuntu. Neuros encourages hacking and finding new ways to use the unit, as can be seen in their latest article explaining how to get a Wiimote to work with it. The results are pretty slick, as you can see in the video above. We can’t imagine trying to use the on screen keyboard with it, but it seems to work nice for basic navigation.