Model Car Indicates Door Is Ajar

The amount of technology in modern cars is truly staggering. Heated seats, keyless entry, and arrays of helpful cameras are all becoming increasingly common in all but the cheapest of models. [mathisox] drives a slightly older Volkswagen van, which has been converted into a camper. Unfortunately, it lacks a proper door ajar display. Nevermind that, though – there’s a charming solution to this problem.

Rather than stick to the automotive standard of boring indicator lights and low-resolution LCD displays, [mathisox] took a more analogous approach. A small model car matching his van was sourced and quickly gutted for the project. It was then fitted with servos to open and close the doors and rear hatch. The servos are controlled by an Arduino Nano, which reads the door switches in the vehicle and actuates the appropriate parts on the model.

With the model car stuck prominently on the dashboard, it serves as a clear visual indicator of the current status of the vehicle’s doors. It’s far less intrusive than those old Chryslers which repeatedly insisted that a door is a jar.

[Thanks to Raffael for the tip!]

Continue reading “Model Car Indicates Door Is Ajar”

Spice Up Your Shop With A VW Pickup Wall Decoration

Seeing a half car is always a disconcerting experience. Especially when that half car is about 14 feet up in the air. [PanasonicModelRC6015] — We’ll call him [RC6015] for short — has gone and mounted 1/2 (actually more like 1/4) of a VW Rabbit Caddy pickup MK1 up on his shop wall.

The caddy started life as a regular 1983 VW pickup. Unfortunately, the years had not been kind to it. The body panels were in good shape, but there were serious rust problems in the floors, strut towers, rockers, and control arm mounts. According to [RC6015], this is beyond “weld on few replacement panels”, though he’s been heavily questioned on it in his Reddit thread.

Cutting the truck down was easy – a reciprocating saw did most of the work. The VW has a unibody design, so there was still some frame there to hold things together. A 2×12 board then was then bolted from the front of the truck to the rear. This made everything stable and provided a solid mounting point. A second 2×12 was lag bolted to several studs on the wall. Then it was just a matter of lifting the truck into position and bolting the two boards together. We’re guessing the [RC6015]’s wall has solid wood studs. Don’t try hanging a 500 lb truck from the wall if you’ve only got thin metal studs behind your sheetrock.

Just in case you’re wondering, the Panasonic Model RC-6015 is a vintage flip display alarm clock, the same one Marty used in Back to the Future.

If a truck on the wall is a bit much for your shop, check out this wall mounted weather display.

Solar Powered Camper Is A Magic Bus Indeed

There’s no doubt that Volkswagen’s offerings in the 1960s and early 1970s were the hippie cars of choice, with the most desirable models being from the Type 2 line, better known as the Microbus. And what could be even hippier than
converting a 1973 VW Microbus into a solar-electric camper?

For [Brett Belan] and his wife [Kira], their electric vehicle is about quality time with the family. And they’ll have plenty of time, given that it doesn’t exactly ooze performance like a Tesla. Then again, a Tesla would have a hard time toting the enormous 1.2 kW PV panel on its roof like this camper can, and would look even sillier with the panel jacked up to maximize its solar aspect. [Brett] uses the space created by the angled array to create extra sleeping space like the Westfalia, a pop-top VW camper. The PV array charges a bank of twelve lead-acid golf cart batteries which power an AC motor through a 500-amp controller. Interior amenities include a kitchenette, dining table, and seating that cost as much as the van before conversion. There’s no word on interior heat, but honestly, that never was VW’s strong suit — we speak from bitter, frostbitten experience here.

As for being practical transportation, that just depends on your definition of practical. Everything about this build says “labor of love,” and it’s hard to fault that. It’s also hard to fault [Brett]’s choice of platform; after all, vintage VWs are the most hackable of cars.

Continue reading “Solar Powered Camper Is A Magic Bus Indeed”

Audi Engineer Exposes Cheat Order

In an interesting turn of events last week in a German court, evidence has materialized that engineers were ordered to cheat emissions testing when developing automotive parts.

Last Tuesday, Ulrich Weiß brought forward a document that alleges Audi Board of Director members were involved in ordering a cheat for diesel emissions. Weiß was the head of engine development for Audi, suspended in November of 2015 but continued to draw more than half a million dollars in salary before being fired after prior to last week’s court testimony.

Volkswagen Group is the parent company of Audi and this all seems to have happened while the VW diesel emissions testing scandal we’ve covered since 2015 was beginning to come to light. Weiß testified that he was asked to design a method of getting around strict emissions standards in Hong Kong even though Audi knew their diesel engines weren’t capable of doing so legitimately.

According to Weiß, he asked for a signed order. When he received that order he instructed his team to resist following it. We have not seen a copy of the letter, but the German tabloid newspaper Bild reports that the letter claims approval by four Audi board members and was signed by the head of powertrain development at the company.

Hackaday was unable to locate any other sources reporting on the letter other than the Bild article we have linked to (also the source used in the Forbes article above). Sources such as Die Welt reference only “internal papers”. If you know of other reporting on the topic please leave a comment about it below.

 

VW Engineer Pleads Guilty To Conspiracy

[James Liang], an engineer at Volkswagen for 33 years, plead guilty today to conspiracy. He was an engineer involved in delivering Diesel vehicles to market which could detect an emissions test scenario and perform differently from normal operation in order to pass US emission standards.

A year ago we talked about the Ethics in Engineering surrounding this issue. At the time we wondered why any engineer would go along with a plan to defraud customers. We may get an answer to this after all. [Mr. Liang] will cooperate with authorities as the VW probe continues.

According to information in the indictment, none of this happened by mistake (as we suspected). There was a team responsible for developing a mode that would detect a test and pass inspection after the company discovered the engine could not otherwise pass. It’s not hard to see the motivation behind this — think of the sunk cost in developing an engine design. The team responsible for cheating the tests went so far as to push software updates in 2014 which made the cheat better, and lying about the existence of these software “features” when questioned by authorities (again, according to the indictment).

Parallel Compressors For Sandblasting Without Crashing Your Grid

[Hannah] is restoring a 1962 Volkswagen Bug. The goal is to get the car on the road in time for her driver’s test. This is no easy task, as the lower 3 inches of all the body work is rusted out, and the engine is…. well, missing. Basically, the car needs a frame off restoration. This means that [Hannah] will have a lot of metal bodywork to clean up. One of the easiest ways to do that is sandblasting.

Large scale sandblasting is a bit different from most air-powered operations. Sandblasting needs only a modest air pressure, but a high air flow. [Hannah] need 25 Sustained Cubic Feet Per Minute (SCFM) at 80 PSI for sandblasting. Most compressors can easily supply that pressure, but 25 SCFM is asking quite a lot. She could go with an expensive 3 phase unit, or rent a diesel screw compressor. However, [Hannah] decided to connect 4 compressors in parallel to give her the flow she needed.

Connecting the air outputs in parallel is easy. The problem is the electricity. Each compressor is rated for 9 amps while running. They draw quite a bit more while starting up. The compressors have to be wired to individual 15 amp circuits to avoid blowing fuses. They also need to be started in sequence so they don’t pull down the AC for the entire house while starting.

Hannah could have used any sort of delay for this, but she chose an Arduino. The Arduino’s wall wart is wired up to the master compressor. Turning on the master powers up the Arduino which immediately starts a 2 second delay. When the delay times out, the Arduino fires up the second compressor. After several delay loops, all 4 compressors are running together.

hannah-schThe Arduino’s GPIO pins can’t handle 9 amp AC loads, so [Hannah] wired them to TIP120 transistors. The TIP120s drive low power relays, which in turn drive high current air conditioning relays. The system works quite well, as can be seen in the video below the break.

If you’re interested in air compressor projects, check out this setup made from an old refrigerator compressor. For more background on the TIP120, check out this article about these useful transistors.

Continue reading “Parallel Compressors For Sandblasting Without Crashing Your Grid”

32C3: Dieselgate — Inside The VW’s ECU

[Daniel Lange] and [Felix Domke] gave a great talk about the Volkswagen emissions scandal at this year’s Chaos Communication Congress (32C3). [Lange] previously worked as Chief architect of process chain electronics for BMW, so he certainly knows the car industry, and [Domke] did a superb job reverse-engineering his own VW car. Combining these two in one talk definitely helps clear some of the smog around the VW affair.

[Lange]’s portion of the talk basically concerns the competitive and regulatory environments that could have influenced the decisions behind the folks at VW who made the wrong choices. [Lange] demonstrates how “cheating” Europe’s lax testing regime is fairly widespread, mostly because the tests don’t mimic real driving conditions. But we’re not sure who’s to blame here. If the tests better reflected reality, gaming the tests would be the same as improving emissions in the real world.

As interesting as the politics is, we’re here for the technical details, and the reverse-engineering portion of the talk begins around 40 minutes in but you’ll definitely want to hear [Lange]’s summary of the engine control unit (ECU) starting around the 38 minute mark.

[Domke] starts off with a recurring theme in our lives, and the 32C3 talks: when you want to reverse-engineer some hardware, you don’t just pull the ECU out of your own car — you go buy another one for cheap online! [Domke] then plugged the ECU up to a 12V power supply on his bench, hooked it up, presumably to JTAG, and found a bug in the firmware that enabled him to dump the entire 2MB of flash ROM into a disassembler. Respect! His discussion of how the ECU works is a must. (Did you know that the ECU reports a constant 780 RPM on the tacho when the engine’s idling, regardless of the actual engine speed? [Domke] has proof in the reverse-engineered code!)

The ECU basically takes in data from all of the car’s sensors, and based on a number of fixed data parameters that physically model the engine, decides on outputs for all of the car’s controls. Different car manufacturers don’t have to re-write the ECU code, but simply change the engine model. So [Domke] took off digging through the engine model’s data.

Long story short, the driving parameters that trigger an emissions reduction exactly match those that result from the EU’s standardized driving schedule that they use during testing — they’re gaming the emissions tests something fierce. You’ve really got to watch the presentation, though. It’s great, and we just scratched the surface.

And if you’re interested in our other coverage of the Congress, we have quite a collection going already.