Website Response Speedometer

Here’s something that will probably make it to a wall right next to the people responsible for the Hackaday servers sometime soon, and should be something every web dev should build at some point: a website response meter, an analog gauge that will tell you how long it takes to reach your website.

The build is simple enough, with a micro servo working as a gigantic analog gauge. There are also a pair of four-digit, seven-segment displays for displaying a digital number and the number of website requests per second. There’s also an 8×8 matrix of bi-color LEDs for showing a green happy face or a red frowny face, just in case all that data wasn’t self-evident to the uninitiated.

All the electronics are handled by an Arduino, but what really makes this build useful, or even possible, is the bit of code that runs on a computer. The computer uses an API from New Relic, a software analytics company, to come up with the response time and requests per second. That data is pulled down and piped up to the Arduino that displays everything on a beautifully milled acrylic sheet.

Arduino Plays White Tiles On Your Mobile Touchscreen

Like many mobile gamers, [Daniel] has found himself caught up by the addictive “White Tiles” game. Rather than play the game himself though,  [Daniel] decided to write his own automatic White Tiles player. While this hack has been pulled off before, it’s never been well documented. [Daniel] used knowledge he gleaned on Hackaday and to achieve his hack.

The basic problem is sensing white vs black tiles and activating the iPad’s capacitive touch screen. On the sensing end, [Daniel] could have used phototransistors, but it turned out that simple CdS cells, or photoresistors, were fast enough in this application. Activating the screen proved to be a bit harder. [Daniel] initially tried copper tape tied to transistors, but found they wouldn’t reliably trigger the screen. He switched over to relays, and that worked perfectly. We’re guessing that changing the wire length causes enough of a capacitance change to cause the screen to detect a touch.

The final result is a huge success, as [Daniel’s] Arduino-based player tears through the classic game in only 3.9 seconds! Nice work [Daniel]!

Click past the break to see [Daniel’s] device at work, and to see a video of him explaining his creation.

Continue reading “Arduino Plays White Tiles On Your Mobile Touchscreen”

Hate Blue M&M’s? Sort Them Using the Power of an iPhone!

Some people really like eating specific M&M colors… You could spend hours sorting your packs of M&M’s into color specific piles, or you could build a machine to do it for you.

That’s exactly what [ReviewMyLife] decided to do, and it’s quite impressive! He’s using a rotating hopper to release M&M’s into a chute one-by-one, and then an iPhone to perform color recognition as the M&M falls past it. That information is then communicated over Bluetooth to the Arduino which actuates a high-speed electromagnetic gate to force the M&M down the right chute for sorting.

The machine works surprisingly well for a prototype that was hot glued together out of foam board, but fear not, he plans to upgrade it now that the proof of concept has been confirmed. He’s hoping to get rid of the iPhone and replace it with a Raspberry Pi for starters, 3D print some of the parts, and consolidate its power supply. Currently he’s using three separate supplies to power the Arduino, electromagnets, and the hopper motor — not very efficient!

Continue reading “Hate Blue M&M’s? Sort Them Using the Power of an iPhone!”

Green-Sweep for Your Ultrasonic Rangefinder

Maybe you’ve never programmed an Arduino before. Or maybe you have, but nothing beyond das blinkenlights. Maybe your soldering iron sits in a corner of your garage, gazing at you reproachfully every time you walk by, like a ball begging to be thrown. Maybe you’ve made a few nifty projects, but have never interfaced them with a PC. If this describes you, then this article and project is just what you need. So grab your favorite beverage, tuck in and prepare to get motivated.

[Anuj Dutt] has not only made a really cool project, he has also done a most excellent job at documenting it. It’s an Arduino controlled “RADAR” like project that uses the familiar Parallax ultrasonic sensor. It’s mounted to a servo and feeds data to a PC where a custom VB.NET program translates the data in to a cool “green radar sweep” screen. It also pushes text to an LCD which reveals the distance from the target.

screenshot of radar program

[Anuj Dutt] hand rolled his Arduino just because, but ran into some trouble getting everything to talk to the PC. He wound up using the ultra user friendly FTDI to save the day. Be sure to check out the video below to see the project in action. [Anuj] published the code for both the Arduino and PC in the video description.

Continue reading “Green-Sweep for Your Ultrasonic Rangefinder”

iRobot Releases Hackable Roomba — Without The Vacuum

We love forward thinking companies that take a risk and do something different. iRobot, the company behind the iconic Roomba, just released the newest version of their Roomba Create — a programmable Roomba (minus the vacuum) that can be hacked and programmed to do all sorts of things.

The company developed the Create with STEM students in mind — a robotics learning platform. It came out originally back in 2007, and we’ve covered many hacks that have made use of it. Many. Like, a lot. One of our favorites has got to be this data center monitoring robot that makes use of the platform!

Anyway, the newest version of the Create features the typical hardware upgrades you’d expect, and with some special emphasis on 3D printing. In fact, the CEO of iRobot [Colin Angle] thinks that 3D printing is going to make a big difference in a few years:

“Your Roomba could be a software file that you print at home,” he says. He says the Create’s new features are a way for the company to get ready for that day, while also providing a platform that educators and hobbyists can use to tinker.

Kudos to you guys, iRobot! We just wish people would stop giving Roomba’s knives…

[Thanks PSUbj21!]

Arduino Thermostat Includes Vacation Mode

When [William’s] thermostat died, he wanted an upgrade. He found a few off-the-shelf Internet enabled thermostats, but they were all very expensive. He knew he could build his own for a fraction of the cost.

The primary unit synchronizes it’s time using NTP. This automatically keeps things up to date and in sync with daylight savings time. There is also a backup real-time clock chip in case the Internet connection is lost. The unit can be controlled via the physical control panel, or via a web interface. The system includes a nifty “vacation mode” that will set the temperature to a cool 60 degrees Fahrenheit while you are away. It will then automatically adjust the temperature to something more comfortable before you return home.

[William’s] home is split into three heat zones. Each zone has its own control panel including an LCD display and simple controls. The zones can be individually configured from either their own control panel or from the central panel. The panels include a DHT22 temperature and humidity sensor, an LCD display, a keypad, and support electronics. This project was clearly well thought out, and includes a host of other small features to make it easy to use.

Sleek Desk Lamp Changes Colors Based on Sun Position

[Connor] was working on a project for his college manufacturing class when he came up with the idea for this sleek desk lamp. As a college student, he’s not fond of having his papers glowing brightly in front of him at night. This lamp takes care of the problem by adjusting the color temperature based on the position of the sun. It also contains a capacitive touch sensor to adjust the brightness without the need for buttons with moving parts.

The base is made from two sheets of aluminum and a bar of aluminum. These were cut and milled to the final shape. [Connor] found a nice DC barrel jack from Jameco that fits nicely with this design. The head of the lamp was made from another piece of aluminum bar stock. All of the aluminum pieces are held together with brass screws.

A slot was milled out of the bottom of the head-piece to make room for an LED strip and a piece of 1/8″ acrylic. This piece of acrylic acts as a light diffuser.  Another piece of acrylic was cut and added to the bottom of the base of the lamp. This makes for a nice glowing outline around the bottom that gives it an almost futuristic look.

The capacitive touch sensor is a pretty simple circuit. [Connor] used the Arduino capacitive touch sensor library to make his life a bit easier. The electronic circuit really only requires a single resistor between two Arduino pins. One of the pins is also attached to the aluminum body of the lamp. Now simply touching the lamp body allows [Connor] to adjust the brightness of the lamp.

[Connor] ended up using an Electric Imp to track the sun. The Imp uses the wunderground API to connect to the weather site and track the sun’s location. In the earlier parts of the day, the LED colors are cooler and have more blues. In the evening when the sun is setting or has already set, the lights turn more red and warm. This is easier on the eyes when you are hunched over your desk studying for your next exam. The end result is not only functional, but also looks like something you might find at that fancy gadget store in your local shopping mall.