Getting Sparks from Water with Lord Kelvin’s Thunderstorm

In the comments to our recent article about Wimshurst machines, we saw that some hackers had never heard of them, reminding us that we all have different backgrounds and much to share. Well here’s one I’m guessing even fewer will have heard of. It’s never even shown up in a single Hackaday article, something that was also pointed out in a comment to that Wimshurst article. It is the Lord Kelvin’s Water Dropper aka Lord Kelvin’s Thunderstorm, invented in the 1860s by William Thomson, 1st Baron Kelvin, the same fellow for whom the Kelvin temperature scale is named.  It’s a device that produces a high voltage and sparks from falling drops of water.

Continue reading “Getting Sparks from Water with Lord Kelvin’s Thunderstorm”

CP/M 8266

Hands up if you’ve ever used a machine running CP/M. That’s likely these days to only produce an answer from owners of retrocomputers. What was once one of the premier microcomputer operating systems is now an esoteric OS, a piece of abandonware released as open source by the successor company of its developer.

In the 1970s you’d have seen CP/M on a high-end office wordprocessor, and in the 1980s some of the better-specified home computers could run it. And now? Aside from those retrocomputers, how about running CP/M on an ESP8266? From multi-thousand-dollar business system to two-dollar module in four decades, that’s technological progress.

[Matseng] has CP/M 2.2 running in a Z80 emulator on an ESP8266. It gives CP/M 64K of RAM, a generous collection of fifteen 250K floppy drives, and a serial port for communication. Unfortunately it doesn’t have space for the ESP’s party piece: wireless networking, but he’s working on that one too. If you don’t mind only 36K of RAM and one less floppy, that is. All the code can be found on a GitHub repository, so if you fancy a 1970s business desktop computer the size of a postage stamp, you can have a go too.

There’s something gloriously barmy about running a 1970s OS on a two-dollar microcontroller, but if you have to ask why then maybe you just don’t understand. You don’t have to have an ESP8266 though, if you want you can run a bare-metal CP/M on a Raspberry Pi.

Doing It With Fewer Bytes Than Bill Gates

The MITS Altair 8800 occupies a unique place in computing history as the first commercially succesful microcomputer for personal rather than business use. It is famous as the platform upon which the first Microsoft product ran, their first BASIC interpreter.

[Josh Bensadon] has an Altair 8800, and became intrigued by its bootloader. The simplest method of programming the machine is through binary using a set of switches on the front panel, and he remarks that there should be a warning in the manual: “fingers will get sore after repeated use of the small switches on the ALTAIR”.

In the Altair manual there are two listings, one 21 byte, and another in 20 bytes. Bill Gates is on record as saying that their first effort was 46 bytes long, but with more work he managed to create one in 17 bytes. Now [Josh] has beaten that, he’s created an Altair 8800 bootloader in only 14 bytes.

His write-up goes into great detail about how those bytes are shaved off, and provides us with a fascinating insight into the 8800’s architecture. Even if your 8-bit assembler is a little rusty, it’s a fascinating read.

We’ve featured Altair-inspired projects many times here at Hackaday, but rarely the real thing. This Altair PC case with the ability to emulate the original was rather a nice idea, as was this Altair front panel project. If you want the joy without the heartache though, there is an online emulator.

Magsafe 1 to Magsafe 2 The Cheap Way

[Klakinoumi] wanted to use their Magsafe 1 charger from 2007 with their newer Macbook Pro Retina from 2012 — but it had a Magsafe 2 port. There were a few options on the table (buy an adapter, buy a new charger, cry) but those wouldn’t do. [Klakinoumi] went with the brute force option of grinding a Magsafe 1 charger to fit Magsafe 2.

Based on the existence of passive adapters that allow Magsafe 1 chargers to work with newer laptops, we’d assume that the older chargers are probably electrically similar to the newer models. That said, it’s not our gear and we’d definitely be checking first.

With that out of the way, it’s a simple enough modification — grind away the Magsafe 1’s magnet until it fits into a Magsafe 2 port. It really is that easy. The spring-loaded pins all seem to line up with the newer port’s pads. [Klakinoumi] reports it worked successfully in their tests with 2012, 2014 and 2015 Macbooks but that it should be attempted at your own risk — good advice, as laptops ain’t cheap.

When doing this mod, consider taking care not to overheat the connector during grinding. You could both melt plastic parts of the connector, or ruin the magnet by heating it past its Curie point.

Interested in the protocol Magsafe speaks over those little golden pins? Find out here.

Adding Buttons to the ESP-12 – The Cheat Way

[Buger] had an ESP-12F and wanted to play with nodeMCU, but found they were lacking buttons for reset & flash. We’ve all been there – mucking about with a project on a breadboard, trying to save the time required to solder up a button by shorting pins with wire or bending component legs to touch. This either doesn’t work or ends up bricking the microcontroller when it inevitably goes wrong. [Buger] found a tidier solution to adding buttons to the ESP-12F with the minimum of effort.

It’s the spirit of deadbug applied to buttons. One side of a piece of wire is soldered to the pin needing to be pulled down. Component leg offcuts are ideal for this. The other end of the wire is bent up and left to float over the metal shield of the ESP-12, which is connected to ground. When you want the pin to go low, press the wire into the shield, grounding it. Let it go, and the pin returns high again, assuming your pullup resistors are all in order.

It’s a quick hack that’s much more robust than trying to hold two ends of a piece of hookup wire in place. It’s also still easier than trying to find a tactile switch solder leads to, and you don’t end up having it hanging off the board either.

For deadbug construction taken to an impressive conclusion, check out this clock built out of discrete components.

[Thanks to Richard Marko for the tip!]

Usborne Release More 1980s Computer Books

Children of the 1980s who had an interest in technology were lucky indeed. As well as the first generations of home computers at their disposal they had the expectation to program them, something which the generation that followed had lost.

Traditional children’s publishers enthusiastically embraced the home computer boom, and probably for the only time in history there were books aimed at children covering subjects like machine code, or interfacing to microprocessors.

Kid's books were better when we were young! Usborne(Fair use)
Kid’s books were better when we were young! Usborne(Fair use)

If you are British, the most memorable of these books came from Usborne Publishing. Their format of colourful cartoons and easy to digest layout have made them something of a cult object among the now-grown-up generation who first received them, and Usborne themselves have cleverly exploited their heritage to promote their current offerings by releasing some of them as PDFs. And now, to promote their latest title, “Coding For Beginners Using Python”, they’ve released five more (scroll down to see). Titles are “Practice Your BASIC”, “Better BASIC”, “Computer Controlled Robots”, “Experiments With Your Computer”, and “Keyboards & Computer Music”, which join the fifteen they’ve already released.

Obviously they are heavily based around the microcomputers of the 1980s, but of course for most Hackaday readers that will be their chief attraction. Either way they’re an interesting read, and should you happen to have a few old micros lying around then maybe you could have a go at some of the projects.

If the BASIC listings are a little foreign to you, might we suggest some places to find BASIC information.

Dumpster Dive Speaker Results In Tube Amplifier

[Michael Wiebusch] found the leftovers of a wrecked vintage tube radio in a pile of electronics junk. Unfortunately, he could not recover any vacuum tubes in it. And to his dismay, it didn’t even have the output transformer, which he figured would have been useful in a guitar amplifier project. The output transformer is not easy to come by nowadays, so he was hoping to at least score that item for his future build. All he could dig out from his dumpster find was a pair of speakers and he ended up building nice Output-Transformer-Less Tube Guitar Amplifier around them.

Valve output stages are generally high-impedance which means they cannot be directly interfaced to low impedance speakers. An impedance matching output transformer is thus used to interface the two. Back in the day when valves were still the mainstay of audio electronics, many cheap amplifier designs would skimp on the output transformer to save cost, and instead use high impedance speakers connected directly to the amplifier output.

[Michael] found a nice reference design of an OTL amplifier for a 620 ohm single speaker. He decided to use the same design but because these speakers were about 300 ohm each, he would have to wire his two speakers in series. At this point, he decided to make his build useful as a proper guitar amplifier by adding a preamplifier stage replicated from another design that he came across. A regular halogen lamp 12V transformer takes care of the heater power supply for all the tubes, and a second, smaller 12V transformer is wired backwards to provide the 300V needed for the plate supply.

The final result is pretty satisfactory, considering that it all started with just a pair of junked speakers. Check out the result in the video after the break.

Continue reading “Dumpster Dive Speaker Results In Tube Amplifier”