Stenography (Yes, with Arduinos)

What’s the fastest keyboard? Few subjects are as divisive in the geek community. Clicky or squishy? QWERTY or Dvorak? Old-school IBM or Microsoft Natural? The answer: none of the above.

danger-court-reporter-tyingThe fastest normal-keyboard typists (Dvorak or Qwerty) can get around 220 words per minute (wpm) in bursts. That sounds fast, and it’s a lot faster than we type, but that’s still below the minimum speed allowable for certified court reporters or closed captioners. The fastest court reporters clock in around 350 to 375 wpm for testimony. But they do this by cheating — using a stenotype machine. We’ll talk more about stenography in a minute, but first a hack.

The Hack

[Kevin Nygaard] bought a used Stentura 200 stenotype machine off Ebay and it wasn’t working right, so naturally he opened it up to see if he could fix it. A normal stenotype operates stand-alone and prints out on paper tape, but many can also be connected to an external computer. [Kevin]’s machine had a serial output board installed, but it wasn’t outputting serial, so naturally he opened it up to see if he could fix it. In the end, he bypassed the serial output by soldering on an Arduino and writing a few lines of code.

shot0001The serial interface board in [Kevin]’s machine was basically a set of switches that made contact with the keys as they get pressed, and a few shift registers to read the state of these switches out over a serial connection. [Kevin] tapped into this line, read the switch state out into his Arduino, and then transmitted the correct characters to his computer via the Arduino’s serial over USB. (Video demo) As hardware types like to say, the rest is a simple matter of software.

Continue reading “Stenography (Yes, with Arduinos)”

A Perfect San Francisco for Hackaday Prize Worldwide

Whew, that was a perfect day. Seriously. A few weeks back, on Saturday June 13th PCH International opened their doors for the Hackaday Zero to Product workshop. I don’t live in California, so having two huge glass garage doors making up one entire wall of your office is odd to me. But on a perfect day like this one it was something miraculous.

We opened the Workshop at 9:30am and those lucky enough to get a free ticket before the event was full streamed in. The topic at hand was a transfer of knowledge on professional level PCB design and once again [Matt Berggren] didn’t disappoint. A former Altium veteran, experienced hardware start-up-er-er, and all around circuit design guru, [Matt] has a natural and satisfying way of working with the many questions that arise while also following his epic talk framework. There must be around a hundred slides in his presentation that covers the bases from component selection, to signal routing, to material selection (substrate, copper density, solder mask material) and a lot more.

The day ran in segments…. sign-in followed by coffee and bakery goods and a talk on Open Hardware from [Ryan Vinyard]. He is the Engineering Lead at Highway1, the well-known hardware startup accelerator which provided a space for the event in the PCH Innovation Hub building. From there we dropped into the first segment of Zero to Product and started riffing on all things PCB design.

A break for salad and pizza three hours later lead into the final two sessions that are broken up by a social pause. Thanks to our Hackaday Prize Sponsors (Atmel, Freescale, Microchip, Mouser, and Texas Instruments) we had plenty of time to discuss the builds each person is planning and to connect them with sponsor-supplied dev boards to help with the prototyping.

We have an album up so that you can check out all the pictures from this event. We’ve held the Zero to Product workshop in Los Angeles, and Shenzhen as well in the recent weeks. Keep watching Hackaday to learn of future opportunities to take part in events in your area!

The 2015 Hackaday Prize is sponsored by:

Maker Faire Kansas City: That’s A Wrap

The 5th annual Kansas City Maker Faire was as fun as ever, but it definitely felt different from previous years. There seemed to be an unofficial emphasis on crafts this year, and I mean this in the broadest sense of the word. There was more exposure for the event in the local media, and this attracted a wider variety of faire-goers. But the exposure also brought more corporate sponsorship. This wasn’t an exclusively bad thing, though. For instance, several people from Kansas City-based construction firm JE Dunn were guiding mini makers through a birdhouse build.

Many of the this year’s booths were focused on a particular handicraft.  A local music shop that makes custom brass and woodwind instruments had material from various stages of the building process on display. Several tables away, a man sat making chainmaille bags. At one booth, a girl was teaching people how to fold origami cranes. Several makers had various geek culture accessories for sale, like a shoulder bag made from a vintage Voltron sweatshirt. The guys from SeeMeCNC made the 12-hour drive with the Part Daddy, their 17-foot tall delta printer. They printed up a cool one-piece chair on Saturday, then made a child-sized version of it on Sunday.

The entire lower level of the venue was devoted to a series of exhibits related to the film and television industry. Collectively, they covered the entire production process from the casting call to the red carpet. Several local prop and costume makers were showing off their fantastic creations, including [Steven] of SKS Props. He started making video game props for fun a few years ago. These days, his work adorns the offices of some of those same game companies.

Of course, there was plenty to see and do outside, too. All the kids playing human foosball were having a blast. LARPers larped next to lowriders and food trucks, power wheels raced, and a good time was had by all.

15 Quadcopters Up for Grabs in Wings, Wheels, and Propellers Contest

Have a project that moves? Then get it entered this week for your chance at one of 15 quadcopters. We’ll award a Crazyflie 2.0 to each of 15 fantastic examples of projects that move with wings, wheels, or propellers (the kind on boats or on flying things). Here’s what you need to do before Thursday, 7/9/15:

That’s all you need to do to be considered. But there’s a lot you can do to help improve your chances of winning. We love to see images, so make sure you have a least one picture in the main gallery. Start your project documentation with a clear and concise description of what you’re doing with the project and how you plan to accomplish that. And a components lists is always helpful!

We had a great time judging the manufacturer sponsor contests this week. We’ll be announcing the 200 winners of those contests over the next few days.

Oh yeah, one last time… you’re going to want to make sure you VOTE right away, because someone’s going to win big this week. [Brian] will tell you more about that tomorrow ;-)

The 2015 Hackaday Prize is sponsored by:

Logic Noise: Ping-pong Stereo, Mixers, and More

So far on Logic Noise, we’ve built up a bunch of sound-making voices and played around with sequencing them. The few times that we’ve combined voices together, we’ve done so using the simplest possible passive mixer — a bunch of resistors. And while that can work, we’ve mostly just gotten lucky. In this session, we’ll take our system’s output a little bit more seriously and build up an active mixer and simple stereo headphone driver circuit.

For this, we’ll need some kind of amplification, and our old friend, the 4069UB, will be doing all of the heavy lifting. Honestly, this week’s circuitry is just an elaboration of the buffer amplifiers and variable overdrive circuits we looked at before. To keep things interesting we’ll explore ping-pong stereo effects, and eventually (of course) put the panning under logic-level control, which is ridiculous and mostly a pretext to introduce another useful switch IC, the 4066 quad switch.

At the very end of the article is a parts list for essentially everything we’ve done so far. If you’ve been following along and just want to make a one-time order from an electronics supply house, check it out.

klangoriumIf you’re wondering why the delay in putting out this issue of Logic Noise, it’s partly because I’ve built up a PCB that incorporates essentially everything we’ve done so far into a powerhouse of a quasi-modular Logic Noise demo — The Klangorium. The idea was to take the material from each Logic Noise column so far and build out the board that makes experimenting with each one easy.

Everything’s open and documented, and it’s essentially modular so you can feel free to take as much or as little out of the project as you’d like. Maybe you’d like to hard-wire the cymbal circuit, or maybe you’d like to swap some of the parts around. Copy ours or build your own. If you do, let us know!

OK, enough intro babble, let’s dig in.

Continue reading “Logic Noise: Ping-pong Stereo, Mixers, and More”

We’re Hiring Contributors And Social Media Masterminds

Hackaday has been expanding into all kinds of new areas. We find ourselves stretched a bit thin and it’s time to ask for help. Want to lend a hand while making some extra dough to plow back into your projects? These are work-from-home (or wherever you like) positions and we’re looking for awesome, motivated people to help guide Hackaday forward!

Applying as a Contributor

Contributors are hired as private contractors and paid for each post. You should have the technical expertise to understand the projects you write about, and a passion for the wide range of topics we feature. If you’re interested, please email our jobs line, start your subject with [Contributor], and include:

  • Details about your background (education, employment, etc.) that make you a valuable addition to the team
  • Links to your blog/project posts/etc. which have been published on the Internet
  • One example post written in the voice of Hackaday. Include a banner image, at least 150 words, the link to the project, and any in-links to related and relevant Hackaday features

Applying as a Social Media mastermind

Social Media positions are hired as private contractors. You should have at least some technical understanding of the type of material which Hackaday revolves around. This position has huge growth potential and we’re looking for someone who will keep a social media schedule full and ensure conversations are happening. If you’re interested, please email our jobs line, start your subject with [SocialMedia], and include:

  • Details about your background (education, employment, etc.) that make you a valuable addition to the team
  • Links to social media accounts you have driven (this may be your own or a company account)
  • Two example Tweets and one example Facebook post which have been written specifically for this application

What are you waiting for? Ladies and Gentlemen, start your applications!

Gates to FPGAs: TTL Electrical Properties

On the path to exploring complex logic, let’s discuss the electrical properties that digital logic signals are comprised of. While there are many types of digital signals, here we are talking about the more common voltage based single-ended signals and not the dual-conductor based differential signals.

Simulated "Real Life"
Single-ended Logic Signal

I think of most logic as being in one of two major divisions as far as the technology used for today’s logic: Bipolar and CMOS. Bipolar is characterized by use of (non-insulated gate) transistors and most often associated with Transistor Transistor Logic (TTL) based logic levels. As CMOS technology came of age and got faster and became able to drive higher currents it began to augment or offer an alternative to bipolar logic families. This is especially true as power supply voltages dropped and the need for low power increased. We will talk more about CMOS in the next installment.

TTL was a result of a natural progression from the earlier Resistor Transistor Logic (RTL) and Diode Transistor Logic (DTL) technologies and the standards used by early TTL became the standard for a multitude of logic families to follow.

Continue reading “Gates to FPGAs: TTL Electrical Properties”