Playing Space Invaders with Real Fire and Lasers

Making a Space Invaders game is up there on the list of most unconventional things you could do with a laser cutter. In watching the tiny little ships burst into flames, [Martin Raynsford’s] modification has got to be one of the more dangerous looking ones we’ve seen as well.

[Martin] always had the desire to make a tangible version of the classic game. Since his Whitetooth A1 laser cutter already contained the bulk of the moving hardware needed, not to mention an actual high powered laser to “pew pew” with, he decided it was the perfect starting point for such a project. The game is played looking down into the cutter since the laser of course fires in that direction, however a basic webcam is mounted to the laser assembly so that you can view the game on a computer screen at the proper perspective. An Arduino Mini is responsible for stepper control, allowing the player to jog back and forth and fire with a keyboard. [Martin] added an extra gear to the z-axis bed-leveler so that it could drive rows of paper invaders left and right across the bottom. Paperclips wedged into slots along a modified backboard hold each of the paper slips in place. This works ideally since they can be reloaded easily and won’t be maimed during use.

Due to the heat of the laser, landing a well positioned shot will likely nuke all of the nearby invaders as well, making for a theatrical inferno and easy win. Now to step up the difficulty level and figure out how to make them fire back…

Continue reading “Playing Space Invaders with Real Fire and Lasers”

Laser-Cut Clock Kicks Your CAD Tools to the Curb and Opts for Python

In a world deprived of stock hardware other than #6-32 bolts and sheets and sheets of acrylic, [Lawrence Kesteloot] took it upon himself to design and build a laser-cut pendulum clock. No Pricey CAD programs? No Problem. In a world where many fancy CAD tools can auto-generate gear models, [Lawrence] went back to first principles and wrote scripts to autogenerate the gear profiles. Furthermore, not only can these scripts export SVG files for the entire model for easy laser cutting, they can also render a 3D model within the browser using Javascript.

Given the small selection of materials, the entire project is a labor of love. Even the video (after the break) glosses over the careful selection of bearings, bolt-hole spacing, and time-sensitive gear ratios, each of which may be an easy macro in other CAD programs that [Lawrence], in this case, needed to add himself.

Finally, the entire project is open source and up for download on the Githubs. It’s not every day we can build ourselves a pendulum clock with a simple command-line-incantation to

make cut

Thanks for the tip, [Bartgrantham]!

Continue reading “Laser-Cut Clock Kicks Your CAD Tools to the Curb and Opts for Python”

Measure Laser Wavelength with a CD and a Tape Measure

Obviously the wavelength of a laser can’t be measured with a scale as large as that of a carpenter’s tape measure. At least not directly and that’s where a Compact Disc comes in. [Styropyro] uses a CD as a diffraction grating which results in an optical pattern large enough to measure.

A diffraction grating splits a beam of light up into multiple beams whose position is determined by both the wavelength of the light and the properties of the grating. Since we don’t know the properties of the grating (the CD) to start, [Styropyro] uses a green laser as reference. This works for a couple of reasons; the green laser’s properties don’t change with heat and it’s wavelength is already known.

It’s all about the triangles. Well, really it’s all about the math and the math is all about the triangles. For those that don’t rock out on special characters [Styropyro] does a great job of not only explaining what each symbol stands for, but applying it (on camera in video below) to the control experiment. Measure the sides of the triangle, then use simple trigonometry to determine the slit distance of the CD. This was the one missing datum that he turns around and uses to measure and determine his unknown laser wavelength.

Continue reading “Measure Laser Wavelength with a CD and a Tape Measure”

A Motor, an Arduino and a Whole Bunch of Laser Cutting

[Guido] was recently commissioned to build a kinetic sculpture for a client who wanted something unique. What he came up with is really awesome.

It’s called ORBIS: The Wooden Kinetic & Lighting Sculpture. It mounts to the wall and provides a focal point for the room – a bright flashy spinning one at that! Does it just stay there and do random things? Nope, of course not! [Guido] built it with a unique control box, two Arduino 2560’s and an Xbee to communicate between them.

Orbit Kinetic Sculpture

He was told to design it using old and new technologies so he’s got a rotary phone dial on the side of the box which allows the user to change through the different modes.

Switches on top also let you change the color of the sculpture and the speed at which it moves around. Since it’s wireless it can be easily set on the coffee table and become an instant conversation starter.

See it in action after the break.

Continue reading “A Motor, an Arduino and a Whole Bunch of Laser Cutting”

How to Identify Plastics Before Laser Cutting Them

If you own a pickup truck, you’ll quickly find yourself making friends with people who just happen to need help moving next weekend. Trust me, it’s almost magical. And if you own a laser cutter (or work in a hacker/maker space that has one) you’ll get some odd requests to cut or engrave plastic items of unknown type. Before you do, you should read this (pdf) chemistry lab written by [David A. Katz] to learn how to identify what type of plastic it is.

There are several reasons why you don’t want to cut or engrave some types of materials. A few make a gooey mess that you’ll regret even trying. Others make a horrendous odor. Some hackerspaces will even charge you extra if you stink up the place (aka: malodorous material charge.) Some tend to catch on fire. Yikes.

But that’s not the worst of it. Some types of plastic release potentially deadly hydrogen chloride gas. It’s bad for the optics, it’s wreaks havoc on the electronics and mechanics of the machine, and could do a really good job of messing up your lungs forever. In the video after the break, you can see the flame test for such plastics in action at the NYC Resistor as they test several common items using nothing more than a blow torch and some copper wire. In short, if the flame test produces a green flame, do not put it in the laser.

If you want to see a good list of what is and what isn’t ok to cut, head on over to ATXHackerspace’s wiki. They will give you a nice run down with lots of notes and helpful hints as well.

Continue reading “How to Identify Plastics Before Laser Cutting Them”

Caramelizing Sugar With a Laser

If you happen to have access to a laser cutter, you’re bound to try cutting or engraving something it wasn’t designed for. We know we have. [Bonnie] and her friend [Brenda] decided to try something new — caramelizing sugar with a laser.

Laser SugarAt their local hackerspace, NYC Resistor, they brought in some chocolate squares and colored sugar and started tinkering with the laser. It’s a 60W CO2 laser by Epilog. After testing a few different options they ended up with the following setting for optimum sugar caramelizing with only one pass:

Speed 100
Power 30
DPI 300

By spreading a thin layer of sugar over top of the chocolate, you can effectively melt and bond the sugar to the chocolate — we suspect playing with the laser focus will also help you fine tune the process for your own confections.

You could just etch the chocolate with the laser as well — but that’s not quite as cool. Perhaps try to up your sushi game, why not laser engrave seaweed before rolling? Or make the perfect laser-cut gingerbread house thanks to designing it in CAD?

Paper Cutter Becomes A Laser Engraver

Small and powerful laser diodes are getting cheaper and cheaper, and there are a few commercial products that give anyone the ability to cut paper and vinyl with a computer-controlled cutting machine. What happens when you combine the two? The beginnings of a hacked together laser engraver.

For this build, [Peter] is using a Silhouette Portrait, a desktop CNC cutting machine that’s usually used for vinyl decals and intricately cut paper crafts. This machine isn’t limited to mere decorative crafts – it’s been used for cutting PCB stencils and other pseudo-industrial tasks.

Because the Silhouette Portrait has an interface that allows just about any CAM software to control it, the only thing [Peter] needed to make for his experiments in laser engraving was a mount to hold the laser diode. Luckily, the laser had a similar form factor to the cutting blades for the machine, and a bit of tape held everything together.

Focusing the laser was done by unscrewing the lens, and with a bit of trial and error, [Peter] was able to make a few marks in the material of his choice. This isn’t a laser cutter, but with a little more work it will make a fantastic laser engraver.

Continue reading “Paper Cutter Becomes A Laser Engraver”