Drawing On Glow In The Dark Surfaces With Lasers

What do you get when you have a computer-controlled laser pointer and a big sheet of glow in the dark material? Something very cool, apparently. [Riley] put together a great build that goes far beyond a simple laser diode and servo build. He’s using stepper motors and a proper motion control software for this one.

The theory behind the device is simple – point a laser at some glow in the dark surface – but [Riley] is doing this project right. Instead of jittery servos, the X and Y axes of the laser pointer are stepper motors. These are controlled by an Arduino Due and TinyG motion control software. This isn’t [Riley]’s first rodeo with TinyG; we saw him at Maker Faire NYC with a pendulum demonstration that was absolutely phenomenal.

Right now, [Riley] is taking SVG images, converting them to Gcode, and putting them up on some glow in the dark vinyl. Since the Hackaday Skull ‘n Wrenches is available in SVG format, that was an easy call to make on what to display in weird phosphorescent green. You can see a video of that along with a few others below.

Continue reading “Drawing On Glow In The Dark Surfaces With Lasers”

Using Lasers for Hair Growth

HowToLou is back with a rather interesting build: One hundred laser diodes for hair growth.

Before you guffaw at the idea of lasers regrowing hair lost to male pattern baldness, there’s a surprising amount of FDA documents covering the use of laser diodes and red LEDs for hair growth and an interesting study covering teeth regrowth with lasers. Yes folks, it’s a real thing, but something that will never get a double-blind study for obvious reasons.

[Lou] is building his hat with 100 laser diodes, most of which were sourced from Amazon. These diodes were implanted in a piece of foam flooring, a rather interesting solution that puts dozens of diodes in a flexible module that’s pretty good for making a wearable device.

The lasers are powered by three AA batteries, stuffed into a four-slot battery holder that was modified to accommodate a power switch. [Lou] has been wearing a nine-diode hat for a month now, and if the pictures are to be believed, he is seeing a little bit of hair growth. At the very least, it’s an interesting pseudo-medical build that seems to be producing results.

Hats like these are commercially available for about $700. [Lou] built his for about $60. We’re calling that a win even if it doesn’t end up working to [Lou]’s satisfaction. Just don’t look at the lasers with your remaining eye.

Continue reading “Using Lasers for Hair Growth”

Generating Laser Cut Boxes in C

[Mike] is a laser cutting newbie and has never had the opportunity to create a file and send it off to a laser for cutting. He knew he didn’t want to squint at a CAD package, nudging lines by tenths of a millimeter, only to screw something up and have to do it all over again. His solution, like so many other automation tasks, was to create a program that would generate a box of any size in .SVG format.

[Mike]’s program runs in C, and only requires a few variables set in the program to create a box of any size. There’s no argc or argv for the program – the one thing that would turn this into a command line utility that simply creates SVG boxes. Perhaps another time.

The rest of [Mike]’s hackerspace, Fab Lab xChc, was impressed the program worked the first time. With this small bit of C code, [Mike] has an easy, simple tool to generate laser cut boxes. The only remotely complicated bit of C this program uses is printf(), so even an Arduino can spit out the SVG for a laser cut box.

Doing Unsafe Things With A Laser Watch

[Pierce Brosnan]-era James Bond had a beautiful Omega wristwatch. Of course as with any Bond gadget, it couldn’t just tell time; it needed to do something else. This watch had a laser, and [Patrick] figured he could replicate this build.

This is apretty normal 1.5W laser diode build, stuffed into a wrist-mountable device that will kill balloons. This is really a watch, though: press a button and this thing will tell time.

In the video below, [Patrick] goes over what damage this watch can do. He manages to pop some black balloons, burn holes in a CD case, light a few matches, cut cellotape, and put tiny burn marks in his wall. The battery won’t last long – just a few minutes – but more than enough to propel [Patrick] into Youtube stardom.

There are no plans or tutorials for the build, but the teardown [Patrick] shows is pretty impressive. To stuff a laser diode, battery, and clock into a watch-sized compartment, [Patrick] needed to turn down the metal buttons to fit everything into his watch case.

Because the comments for this post will invariable fill up with concern trolls, we’re just going to say, yes, this is incredibly unsafe, no one should ever do this, and it probably kills puppies.


Laser-cut Album Released

In some alternate universe, where laser cutters and phonographs are more common than MP3 players, it makes a ton of sense to release laser-cutter files for your band’s new album (Translated). In this universe, it’s wacky and awesome.

The new EP from ASIC, alias [Patric] from Fablab Zürich, is out as PDF before it’s out in other forms of digital download, and the trailer video (embedded below the break) looks fantastic.

The release draws on this Instructable by Amanda Ghassaei to turn the music into PDFs suitable for feeding into a laser cutter, and we think it’s classy that she gets a shout-out on the label’s release page.  Everything else about the album will be released under a Creative Commons license to boot.

Continue reading “Laser-cut Album Released”

How a Real 3D Display Works

There’s a new display technique that’s making the blog rounds, and like anything that seems like its torn from [George Lucas]’ cutting room floor, it’s getting a lot of attention. It’s a device that can display voxels in midair, forming low-resolution three-dimensional patterns without any screen, any fog machine, or any reflective medium. It’s really the closest thing to the projectors in a holodeck we’ve seen yet, leading a few people to ask how it’s done.

This isn’t the first time we’ve seen something like this. A few years ago. a similar 3D display technology was demonstrated that used a green laser to display tens of thousands of voxels in a display medium. The same company used this technology to draw white voxels in air, without a smoke machine or anything else for the laser beam to reflect off of. We couldn’t grasp how this worked at the time, but with a little bit of research we can find the relevant documentation.

A system like this was first published in 2006, built upon earlier work that only displayed pixels on a 2D plane. The device worked by taking an infrared Nd:YAG laser, and focusing the beam to an extremely small point. At that point, the atmosphere heats up enough to turn into plasma and turns into a bright, if temporary, point of light. With the laser pulsing several hundred times a second, a picture can be built up with these small plasma bursts.


Moving a ball of plasma around in 2D space is rather easy; all you need are a few mirrors. To get a third dimension to projected 3D images, a lens mounted on a linear rail moves back and forth changing the focal length of the optics setup. It’s an extremely impressive optical setup, but simple enough to get the jist of.

Having a device that projects images with balls of plasma leads to another question: how safe is this thing? There’s no mention of how powerful the laser used in this device is, but in every picture of this projector, people are wearing goggles. In the videos – one is available below – there is something that is obviously missing once you notice it: sound. This projector is creating tiny balls of expanding air hundreds of times per second. We don’t know what it sounds like – or if you can hear it at all – but a constant buzz would limit its application as an advertising medium.

As with any state-of-the-art project where we kinda know how it works, there’s a good chance someone with experience in optics could put something like this together. A normal green laser pointer in a water medium would be much safer than an IR YAG laser, but other than that the door is wide open for a replication of this project.

Thanks [Sean] for sending this in.

Continue reading “How a Real 3D Display Works”

Don’t You Just Love Comic Sans?

Trick question! Of course you do, everyone loves Comic Sans! It’s only like the best font in the history of the internet! Why would you ever use anything else?

Oh! Is it because you feel like writing your novella on a computer is cheating? You wish you could use Comic Sans on your classic Sears-branded Brother Charger 11 typewriter from the 70’s? Don’t worry, we’ve got you covered.

Jokes aside, this is actually a pretty clever hack. He’s modified a typewriter to use custom letters which he has laser cut out of acrylic and super glued to the strikers of the typewriter. Continue reading “Don’t You Just Love Comic Sans?”