Scissors Make Great Automatic Cable Cutters

The team at [2PrintBeta] required a bunch of cables, heat shrink, and braid to be cut for their customers. They looked into an industrial cable cutter, but decided the price was a little too high, so they decided to make their own. They had a bunch of ideas for cutting: Using a razor blade?  Or a Dremel with a cutting wheel? What they came up with was a DIY cable cutter that uses a pair of scissors, a pair of stepper motors, a pair of 3D printed wheels and an Arduino.

The first thing the team had to do was to mount the scissors so they would cut reliably. One of the stepper motors was attached to a drive wheel that had a bolt mounted on it. This went through one of the scissors’ handles, the other handle was held in place on the machine using screws. The second stepper motor was used to rotate the wheels that drives the cable through to the correct length. [2PrintBeta] used a BAM&DICE shield and two DICE-STK stepper motor drivers on an Arduino Mega to control the cutter.

The [2PrintBeta] team are pretty good at doing things themselves, as we’ve seen previously with their DIY plastic bender. And again, with this automatic cable cutter, they’ve seen a need and resolved it using the things at their disposal and some DIY ingenuity.

Continue reading “Scissors Make Great Automatic Cable Cutters”

What’s The Deal With Atmel And Microchip?

It’s been nearly a year since Microchip acquired Atmel for $3.56 Billion. As with any merger, acquisition, or buyout, there has been concern and speculation over what will become of the Atmel catalog, the Microchip catalog, and Microchip’s strategy for the coming years.

For the Hackaday audience, this is a far more important issue than Intel’s acquisition of Altera, On Semi and Fairchild, and even Avago’s purchase of Broadcom in the largest semiconductor deal in history. The reason Microchip’s acquisition of Atmel is such an important issue is simply due to the fact the Hackaday community uses a lot of their parts. This was a holy war, and even changing the name of a line of chips to ‘MCMega’ would result in a consumer rebellion, or at least a lot of very annoying tweets.

For the record, I’ve tried my best to figure out what’s going on with Microchip’s acquisition of Atmel for the last few months. I’ve talked to a few Microchip reps, a few Atmel reps, and talked to a few ‘out of band’ connections – people who should know what’s going on but aren’t directly tied to either Atmel or Microchip. The best I’ve come up with is a strange silence. From my perspective, it seems like something is going on, but no one is saying anything.

Take the following with several grains of salt, but Microchip recently got in touch with me regarding their strategy following their Atmel acquisition. In a few thousand words, they outlined what’s going on in casa Microchip, and what will happen to the Atmel portfolio in the future.

Broad Strokes

In broad strokes, the Microchip PR team wanted to emphasize a few of the plans regarding their cores, software, and how Microchip parts are made obsolete. In simple, bullet point terms, this is what Microchip passed on to me, to pass on to you:

  • Microchip will continue their philosophy of customer-driven obsolescence. This has historically been true – Microchip does not EOL parts lightly, and the state of the art from 1995 is still, somewhere, in their catalog.
  • We plan to support both Atmel Studio 7 and MPLAB® X for the foreseeable future.
  • Microchip has never focused on “one core”, but rather on the whole solution providing “one platform.” This is also true. A year ago, Microchip had the MIPS-based PIC-32 cores, a few older PIC cores, and recently Microchip has released a few ARM cores. Atmel, likewise, has the family tree of 8 and 32-bit AVR cores and the ARM-based SAM cores.
  • We will continue to support and invest in growing our 8-bit PIC® and AVR MCU product families.


In addition to the broad strokes outlined above, Microchip also sent along a few questions and answers from Ganesh Moorthy, Microchip’s President and COO. These statements dig a little bit deeper into what’s in store for the Microchip and Atmel portfolios:

How will the 32-bit products complement each other? Atmel has a few 32-bit microcontrollers, like the SAM and AT32 series. Microchip has the PIC-32. The answer to this question is, “Many of the 32-bit MCU products are largely complementary because of their different strengths and focus.  For example, the SAM series has specific families targeting lower power consumption and 5 volts where PIC32 has families more optimally suited for audio and graphics solutions. We plan to continue investing in both SAM and PIC32 families of products.

Will Atmel’s START support 8-bit AVRs? “Yes, although it is too early to commit to any specific dates at this stage, we consider modern rapid prototyping tools, such as START and the MPLAB Code Configurator, strategic for the our customers to deliver innovative and competitive solutions in this fast-paced industry.”

Now that Microchip has a complete portfolio of low-power, inexpensive 32-bit microcontrollers, will the focus on 8-bit product be inevitably reduced? No, we see that in actual embedded control applications there is still a large demand for the type of qualities that are uniquely provided by an 8-bit product such as: ease-of-use, 5V operation, robustness, noise immunity, real-time performance, long endurance, integration of analog and digital peripherals, extremely low-static power consumption and more. We don’t think that the number of bits is an appropriate / sufficient way to classify a complex product such as the modern microcontroller. We believe that having the right peripherals is actually what matters most.”

Security, Memories, WiFi, and Analog products. For both Atmel and Microchip, the most visible products in each of their portfolios is the lineup of microcontrollers. This isn’t the limit of their portfolios, though: Atmel has space-grade memories, Microchip has some very useful networking chips, and both companies have a number of security and crypto chips. In the statements given by Moorthy, very little will change. The reason for this is the relative lack of overlap in these devices. Even in segments where there is significant overlap, no EOLs are planned, circling back to the, “philosophy of customer-driven obsolescence.” In other words, if people keep buying it, it’s not going away.

The Takeaway

What is the future of Microchip post-Atmel acquisition? From what I’m seeing, not much. Microchip is falling back on their philosophy of ‘customer-driven obsolescence’. What does that mean? Any non-biased assessment of Microchip’s EOL policy is extremely generous. The chip found in the Basic Stamp 1, from 1993, is still available. It’s not recommended for new designs, but you can still buy it. That’s impressive any way you look at it.

The one thing we’re not getting out of this pseudo press release is information about what Atmel will be called in a few years. Will the Atmel mark be subsumed by a gigantic letter ‘M’? Will the company retain two different trademarks? There is no public information about this.

Yes, I know this post is a nearly verbatim copy of a pseudo press release. I’m not particularly happy this information was presented to me this way, but then again, the Atmel/Microchip ecosystem has been impressively secretive. This is the only information that exists, though, and I’m glad to have it in any event.

That said, there are a lot of people in the Hackaday community that want to know what the deal is with Microchip and Atmel. Short of pulling Jerry Seinfeld out of retirement, this is the best we’re going to get for now. Of course, if you have any info or speculation, the comments below are wide open.

This Miniscule IR to HID Keyboard Hides in a Key Cap

Shards of silicon these days, they’re systematically taking what used to be rather complicated and making it dead simple in terms of both hardware and software. Take, for instance, this IR to HID Keyboard module. Plug it into a USB port, point your remote control at it, and you’re sending keyboard commands from across the room.

To do this cheaply and with a small footprint used to be the territory of bit-banging software hacks like V-USB, but recently the low-cost lines of microcontrollers that are anything but low-end have started speaking USB in hardware. It’s a brave new world.

In this case we’re talking about the PIC18F25J50 which is going to ring in at around three bucks in single quantity. The other silicon invited to the party is an IR receiver (which demodulates the 38 kHz carrier signal used by most IR remotes) with a regulator and four passives to round out the circuit. the board is completely single-sided with one jumper (although the IR receiver is through-hole so you don’t quite get out of it without drilling). All of this is squeezed into a space small enough to be covered by a single key cap — a nice touch to finish off the project.

[Suraj] built this as a FLIRC clone — a way to control your home-built HTPC from the sofa. Although we’re still rocking our own HTPC, it hasn’t been used as a front-end for many years. This project caught our attention for a different reason. We want to lay down a challenge for anyone who is attending SuperCon (or not attending and just want to show off their chops).

This is nearly the same chip as you’ll find on the SuperCon badge. That one is a PIC18LF25K50, and the board already has an IR receiver on it. Bring your PIC programmer and port this code from MikroC over to MPLAB X for the sibling that’s on the badge and you’ll get the hacking cred you’ve long deserved.

[via Embedded Lab]

Running LISP on an ESP8266

LISP is a polarizing language. Either you love it or you hate it. But we’ll put aside our personal preferences to bring you a good hack. In this case a LISP environment running on an ESP8266. [Dmitry] is on the “love it” side of the fence — he’s been waiting for an excuse to code up a LISP interpreter for a while, and he found one in the ESP8266.

there-is-always-a-way-2Actually, [Dmitry] is running LISP inside JavaScript, which is itself presumably coded up in C, before it’s assembled to run on an ESP8266. (It’s turtles all the way down!) This means that he can piggy-back on JavaScript’s garbage collection and console handling and so on. After picking a suitably small LISP implementation (actually a Scheme dialect for those of you who know the difference), he went to work.

One weekend bled into the next, but he got the system running, connected to the network, and had LEDs blinking! In the end, he even managed to squeeze in some optimization for memory’s sake. Pretty cool, and because it takes advantage of an already complete system, it can even be made pretty useful. Not bad for a few weekends’ work!

And finally, if Lots of Irritating Silly Parentheses is your idea of a good time, but the wealth of computing resources available on an ESP8266 seem overkill, have a look at Microlisp, running on an AVR. Or go to the opposite extreme, and run a LISP OS on a Raspberry Pi. Whatever you do, don’t forget to close your parentheses! (We’re told that’s a traditional LISPer farewell.)

Porting NES to the ESP32

There’s an elephant in the room when it comes to the Raspberry Pi Zero. The Pi Zero is an immensely popular single board computer, but out of stock issues for the first year may be due to one simple fact: you can run a Nintendo emulator on it. Instead of cool projects like clusters, CNC controllers, and Linux-based throwies, all the potential for the Pi Zero was initially wasted on rescuing the princess.

Espressif has a new chip coming out, the ESP32, and it’s a miraculous Internet of Things thing. It’s cheap, exceptionally powerful, and although we expect the stock issues to be fixed faster than the Pi Zero, there’s still a danger: if the ESP32 can emulate an NES, it may be too popular. This was the hypothetical supply issue I posited in this week’s Hackaday Links post just twenty-four hours ago.

Hackaday fellow, Hackaday Supercon speaker, Espressif employee, and generally awesome dude [Sprite_tm] just ported an NES emulator to the ESP32. It seems Espressif really knows how to sell chips: just give one of your engineers a YouTube channel.

This build began when [Sprite] walked into his office yesterday and found a new board waiting for him to test. This board features the ESP-WROOM-32 module and breaks out a few of the pins to a microSD card, an FT2232 USB/UART module, JTAG support, a bunch of GPIOs, and a 320×240 LCD on the back. [Sprite]’s job for the day was to test this board, but he reads Hackaday with a cup of coffee every morning (like any civilized hacker) and took the links post as a challenge. The result is porting an NES emulator to the ESP32.

The ESP-32-NESEMU is built on the Nofrendo emulator, and when it comes to emulation, the ESP32 is more than capable of keeping the frame rate up. According to [Sprite], the display is the bottleneck; the SPI-powered display doesn’t quite update fast enough. [Sprite] didn’t have enough time to work on the sound, either, but the source for the project is available, even if this dev board isn’t.

Right now, you can order an ESP32; mine are stuck on a container ship a few miles from the port of Long Beach. Supply is still an issue, and now [Sprite] has ensured the ESP32 will be the most popular embedded development platform in recent memory. All of this happened in the space of 24 hours. This is awesome.

Continue reading “Porting NES to the ESP32”

A Completely Open Microcontroller

An annotated mRISCV die image

We don’t know about you, but the idea of an Arduino-class microprocessor board which uses completely open silicon is a pretty attractive prospect to us. That’s exactly [onchipUIS]’s stated goal. They’re part of a research group at the Universidad Industrial de Santander and have designed and taped out a RISCV implementation with Cortex M0-like characteristics.

The RISCV project has developed an open ISA (instruction set architecture) for modern 32-bit CPUs. More than 40 research groups and companies have now jumped on the project and are putting implementations together.

[onchipUIS] is one such project. And their twitter timeline shows the rapid progress they’ve been making recently.

Die directly bonded to an OSHPark PCB

After tapeout, they started experimenting with their new wirebonding machine. Wirebonding, particularly manual bonding, on a novel platform is a process fraught with problems. Not only have [onchipUIS] successfully bonded their chip, but they’ve done so using a chip on board process where the die is directly bonded to a PCB. They used OSHPark boards and described the process on Twitter.

The board they’ve built breaks out all the chip’s peripherals, and is a convenient test setup to help them validate the platform. Check it, and some high resolution die images, out below. They’re also sending us a die to image using our electron microscope down at hackerfarm, and we look forward to the results!

Continue reading “A Completely Open Microcontroller”

Minimal Computer and Operating System: One Button, One LED

DUO BINARY is a very, very small computer system in every possible sense. It runs on an ATtiny84, which has even got “tiny” in its name. The user interface is a single button for data entry and a single LED for feedback, making this binary keyboard look frivolously over-complicated. It uses a devilish chimera of Morse code and a truncated ASCII to enter data, and the LED blinks the same back at you.

We’re guessing that [Jack Eisenmann] is the only person in the world who can control this thing, and you can watch him doing so in the video embedded below. Continue reading “Minimal Computer and Operating System: One Button, One LED”