RC Lawnmower Has No Grass to Cut

They say laziness and necessity is one of the greatest drives for invention. Whoever said that didn’t think about what happens when inventors are bored. [The Random Mechanic] decided to build himself a remote-controlled lawnmower, despite the terrible drought he’s been having — resulting in literally no grass to cut.

To make the lawn mower remote-controlled, he cobbled together a gas lawn mower, with the remains of an electric wheelchair. This ended up working really well. He’s using an old RC car remote and its two servos to remotely control the original wheel chair’s joystick. Simple, but super effective.

The wheelchair mower is fast, nice and heavy thanks to some lead acid batteries, and very maneuverable with the front wheels being casters. It’s a shame he doesn’t have any grass to cut!

Continue reading “RC Lawnmower Has No Grass to Cut”

Custom Threaded Inserts for 3D Printing

There’s a variety of ways to add threaded holes to 3D printed objects. You can tap a hole, but the plastic isn’t always strong enough. Nut traps work, but aren’t very attractive and can be difficult to get exactly the right size. If you try to enclose them, you have to add a manual step to your printing process, too. You can buy threaded inserts (see video below) but that means some other piece of hardware to have to stock in your shop.

[PeterM13] had a different idea: Cut a piece of threaded stock, put nuts on the end and heat it up to let the nuts reform the plastic. This way the nut traps wind up the perfect size by definition. He used two nuts aligned and secured with thread locker. Then he used a hot air gun to only heat the metal (so as to reduce the chance of deforming the actual part). Once it was hot (about 15 seconds) he pulled the nuts into the open hole, where it melted the plastic which grips the nuts once cooled again.

Continue reading “Custom Threaded Inserts for 3D Printing”

Cheap Function Generator Teardown and Improvement

In general, you get what you pay for, and when [Craig] picked up a cheap function generator off eBay, he didn’t expect much from it. But as he shows us in his blog post and a series of videos below, while the instrument lived down to his expectations, he was able to fix it up a bit.

Having spent only $100USD for the MHS-5200A, [Craig]’s adventure is a complete teardown and analysis of the function generator. While it sort of lives up to its specs, it’s pretty clear that some design decisions resulted in suboptimal performance. At higher frequencies and higher amplitudes, the sine wave output took on a markedly non-sinusoidal character, approaching more of a triangle waveform. The spectrum analyzer told the tale of multiple harmonics across the spectrum. With a reverse-engineered schematic in hand, he traced the signal generation and conditioning circuits and finally nailed the culprit – an AD812 op-amp used as the final amplifier. An in-depth discussion of slew rate follows in part 2, and part 3 covers replacement of the dodgy chip with a better selection that improves the output signal. We’re also treated to improvements to a low-pass filter that fixed a nasty overshoot and ringing problem with the unit’s square wave function.

If hacking the MHS-5200A seems a bit familiar to you, that’s because we covered another reverse-engineering exploit of it recently. That hack of the serial protocol of the instrument was by [WD5GNR], also known as Hackaday’s own [Al Williams]. Cheers to both [Craig] and [Al] for showing us what you can do with a hundred bucks and a little know-how.

Continue reading “Cheap Function Generator Teardown and Improvement”

Modified Mower Hacks the Heavy Stuff

Clearing brush is no fun. Sure, swinging a machete on a hot, humid day sounds great, but when you’re sitting in an oatmeal bath the next day because you didn’t see the poison ivy, you’ll be looking for a better way. [RoboMonkey] did just that with a field-expedient brush trimmer that’s sure to help with his chores.

This is a hack in the true Junkyard Wars sense of the word. A cast-off electric push mower deck caught [RoboMonkey]’s eye, and a few spare brackets and bolts later his electric hedge trimmer was attached across the front of the mower. With a long extension cord trailing behind, he was able to complete in 10 minutes what would normally take him an hour to accomplish, without spending a dime on either a specialized brush cutter or a landscaping service. The video after the break reveals that it may not be the most powerful tool in the shed, and it won’t likely stand up to daily use, but for this twice a year chore, it’s more than sufficient. And since the hedge trimmer wasn’t modified, it’s still available for its original purpose. Reduce, reuse, recycle – and repurpose.

While we haven’t seen many brush cutters before, we seen plenty of mower mods. From LiPo electrics to a gas-powered RC unit, the common push-mower seems to be a great platform for all kinds of hacking.

Continue reading “Modified Mower Hacks the Heavy Stuff”

Data Logging in the Picoampere Range

You probably know that to transfer the most energy between a source and a load their impedance needs to match. That’s why a ham radio transmitter needs a 50 ohm antenna (at least, usually). The transmitter is 50 ohms and you want a match. Some test equipment matches impedance, but for multimeters, oscilloscopes and a lot of other gear, the instrument just presents a very large impedance. As long as it is much larger than the measured circuit’s impedance, the effect will be small.

With today’s MOSFET instrumentation amplifiers, it isn’t uncommon to see very high input impedances.  However, you sometimes run into something that has a low input Z and that can cause issues if you don’t account for them. On the other hand, where some people see issues, others see opportunities.

Continue reading “Data Logging in the Picoampere Range”

VirtualBench Tear Down

What do you get when you cross a mixed-signal oscilloscope, a function generator, a multimeter, a power supply, and some programmable digital I/O in a box? Sounds like the set up to a very geeky joke, but it is actually National Instrument’s VirtualBench product. [Shahriar] has one and wanted to know what was inside, so he did a tear down.

Continue reading “VirtualBench Tear Down”

Breadboards Go to Pot

Solderless breadboards are great for ICs and discrete components like resistors, capacitors, and transistors (at least the through hole kind). They aren’t so good at holding big components like potentiometers. Sure, you can jam trimmers in maybe. You can also solder leads to a pot, but that’s not pretty and tend to pull out when handled. [PaulStoffregen] got tired of it, so he put together some good looking PC boards that mount a 6mm shaft pot securely to a breadboard.

[Paul] noticed that having delicate or knobless adjustments on a breadboard inhibited people from playing with demo circuits. The new set up invites people to make adjustments. The pictures and video show an early version with six pins, but [Paul] added two more pins on the recent batch to increase the grip of the breadboard.

Continue reading “Breadboards Go to Pot”