The Nicest Home Made Spot Welder We’ve Ever Seen

By golly, look at the build quality of this homemade spot welder.

Just about everyone on here knows it’s quite possible to build one of these things using a re-wrapped microwave transformer, but they’re usually made of wood like the one we swap on Friday, and we often wonder how much real use they get other than “hey look I built a spot welder!”. I myself made one, but then ended up buying a professional one because it works better. Not [Matthew Borgatti] though, his looks better and has more features than even the one I bought!

Screen-Shot-2015-07-01-at-3.09.59-PM

Why? Because he put some serious thought into his design. He even 3D modeled the whole thing in SolidWorks.

Beyond the excellent laser cut enclosure (complete with ratcheting work piece clamping), [Matt’s] also added an Arduino to create a timing circuit. Most times you just squeeze the clamp, press the button, and watch the metal heat up — “I think that’s good…”

But with an actual timing circuit you can calculate how much time you need versus current and electrode size to produce a good quality weld.

Continue reading “The Nicest Home Made Spot Welder We’ve Ever Seen”

Exploding Multimeter Battle Royale

If you check out eBay, Amazon, or the other kinda-shady online retailers out there, you’ll quickly find you can buy a CAT III (600V) rated multimeter for under $50. If you think about it, this is incredible. There’s a lot of engineering that needs to go into a meter that is able to measure junction boxes, and factories in China are pushing these things out for an amazing price.

Over on the EEVBlog, these meters are being pushed to the limits. Last month, [joeqsmith] started a thread testing the theory that these cheap meters can handle extremely high voltages. A proper CAT III test requires a surge of electrons with a 6kV peak and a 2 ohm source. With a bunch of caps, bailing wire, JB Weld and zip ties, anyone can test if these meters are rated at what they say they are. Get a few people on the EEVBlog sending [joeqsmith] some cheapo meters, and you can have some real fun figuring out how these meters stack up.

The real experiments began with [joe smith]’s low energy surge generator, a beast of a machine that can be measured with an even beastlier high voltage scope probe. This is a machine that will send a voltage spike through anything to short out traces on poorly designed multimeters.

How did the cheapo meters fare? Not well, for the most part. There was, however, one exception: the Fluke 101. This is Fluke’s My First Multimeter, stuffed into a pocketable package. This meter is able to survive 12kV pulses when all but two of the other brands of meters would fail at 3kV.

What’s the secret to Fluke’s success? You only need to look at what the Fluke 101 can’t do. Fluke’s budget meter doesn’t measure current. If you ever look inside a meter, you’ll usually find two fuses, one for measuring Amps and the other for all the other functions on the scope. There’s quite a bit of engineering that goes into the current measurement of a meter, and when it goes wrong you have a bomb on your hands. Fluke engineers rather intelligently dropped current measurement from this budget meter, allowing them to save that much on their BOM.

There’s an impressive amount of data collected by [joeqsmith] and the other contributors in this thread, but don’t use this to decide on your next budget meter; This is more of an interesting discovery of how to make a product that meets specs: just cut out what can’t be done with the given budget.

Joining Sheet Metal Together with a DIY Spot Welder

Once in a while there comes a time that you need a tool for one specific job. In these cases, it doesn’t make much sense to buy an expensive tool to use just once or twice. For most of us, Spot Welders would fall into this category. [mrjohngoh] had the need to join two pieces of sheet metal. Instead of purchasing a commercial unit, he set out to make his own spot welder.

spotwelder A spot welder works by passing an electric current through two thin pieces of metal. The resistance of the metal work pieces and the current passed though them creates enough heat to melt and join the two together at a single spot. To be able to get the high current needed for this project, [mrjohngoh] started with an old microwave transformer. He removed the standard secondary coil and re-wrapped it with 1cm thick wiring to get maximum current out of the transformer. The ends of the coil wire attach to electrodes, which are made from a high-current electrical plug. The electrodes are mounted at the ends of a pair of hinged arms. The weld is made when the two pieces of metal are sandwiched between the electrodes and power is applied.

Spot welding isn’t just for joining two pieces of sheet metal. It’s also used for things like welding tabs onto battery terminals. The versatility and easy of building these welders make them one of the most featured tool hack we’ve ever seen.

Rotary Indexer gives Mill a 4th axis (sort of)

Rotary indexer’s are standard issue in most machine shops. These allow you to hold or chuck a work piece, and then a graduated handle lets you to rotate the workpiece. Useful when you want to drill or tap axial or radial features. A rack and pinion drive ensures that the workpiece does not move under machining load. Quite often, these indexers also have a manual lock to take care of gear backlash and play. Automating them is not too difficult either. You could use just a stepper motor (open loop) or servo+encoder (closed loop) to drive the turntable.

[smashedagainst] needed to drill six radial holes on a part. And he had to do it on 500 pieces for a total of 3000 holes. That was just for the first initial run, with more drilling likely in the future. The part in question was small and light weight. So instead of using a heavy duty, industrial grade unit, he built an all-electric rotary indexing jig using a stepper motor and an Arduino, giving him a sort of rotary 4th axis. His idea was to directly use the stepper motor to rotate the workpiece without any gearing, but he needed to build his own rig to do so.

Continue reading “Rotary Indexer gives Mill a 4th axis (sort of)”

Getting Mixed Up with Home Stir Welding

Most processes designed to join two pieces of what-have-you together are consumptive of something, whether it’s some material acting as a third party to work piece and the tool, or the tool itself. In the wonderful world of friction stir welding, the material of the two pieces under union gets swirled together through friction as the tool traverses the join path. There are, of course, professional machines that perform this with relative ease, but with a large amount of beer on the line, [skookum_choocher] was determined to make his own.

In the first video, he machines a friction welding tool by shaping a tungsten carbide button from a drill bit using a diamond grinder. Once he has a rough shoulder and protuberance going, it’s time to let her rip.  Despite issues with clamping and the geometry of his tool, the weld is ultimately successful at the tail end.

Undeterred, he has another go at it after making some adjustments to the tool shoulder, changing the belt on his poor old Bridgeport, and increasing the clamping strength by a factor of four. You clamp sixteen tons, and whaddya get? A slightly better butt weld than the first time, it turns out. Fearing this weld is insufficient to win the bet, he goes for the lap weld with the work pieces stacked together in a sandwich. We prefer pizza with beer, but nevertheless congratulate him.

Continue reading “Getting Mixed Up with Home Stir Welding”

DIY Air Compressor Made From Refrigerator and Fire Extinguisher

[Giorgos] wanted to build a pneumatic solder paste application tool but needed an air compressor to power it. Instead of going out and buying a compressor, he decided to build one himself. It sure is an ugly duckling but we’re impressed with it’s performance.

The air tank is an old spent fire extinguisher. The stock valve was removed and the insides were cleaned out. Out of curiosity, [Giorgos] figured out the volume by filling the tank with water, then measuring how much water came out. It turned out to be 2.8 liters. Two holes were drilled and threaded bungs were welded on to attach inlet and outlet lines.

The compressor portion is straight out of a refrigerator. Besides the compressor being free, the other benefit is that it is super quiet! Check the video after the break, you’ll be astonished. [Giorgos] did some calculations and figured out that his solder paste applicator needed about 8 bar (116 psi) of pressure. The refrigerator compressor easily handles that, filling the tank in 1 minute, 25 seconds.

On the output side of the tank resides a pressure switch for automatically filling the tank and a regulator for ensuring the solder paste applicator gets the required pressure. This isn’t the first time we’ve seen a refrigerator compressor used as an air compressor. Check out this dual setup capable of 400 psi.

Continue reading “DIY Air Compressor Made From Refrigerator and Fire Extinguisher”

Hacking a $100 Signal Generator

Signal generators are a useful piece of kit to have on your electronics bench. The downside is that they tend to be rather expensive. If you have $100 to drop on a new toy, the MHS-5200A is a low cost, two channel, 25 MHz generator that can be found on eBay.

The downside is the software. It’s an ugly Windows interface that’s a pain to use. The good news is that [wd5gnr] reverse engineered the protocol so you don’t have to. This means other software can be developed to control the device.

When connected to a computer, this function generator shows up as a virtual USB serial port. The documentation that [wd5gnr] assembled lists all the serial commands you can send, and what they do. If you aren’t into manually setting waveforms from a serial terminal (who is?) there’s a tool for doing that automatically on Github. This takes in a CSV file describing a waveform, and programs the generator to make it for you.

The software is also compatible with Waveform Manager Plus, a free GUI tool for defining waveforms. Putting this all together, you can have a pretty capable waveform generator for less than $100.