Another Helping Hands Build

[Punamenon2] wanted a soldering station with integrated helping hands. He couldn’t find one, but he decided it would be a good 3D printed project. In all fairness, this is really 3D printing integrating several off-the-shelf components including a magnifier, a soldering iron holder, a soldering iron cleaner, a couple of “octopus” tripods, and some alligator clips. Total cost? Less than $30.

In addition to holding the Frankenstein monster together, the 3D printed structure also provides a storage tray with special sloped edges to make removing small screws easier.

Continue reading “Another Helping Hands Build”

Adding a Riving Knife for Table Saw Safety

What in the world is a riving knife? Just the one thing that might save you from a very bad day in the shop. But if your table saw doesn’t come with one, fret not — with a little wherewithal you can add a riving knife to almost any table saw.

For those who have never experienced kickback on a table saw, we can assure you that at a minimum it will set your heart pounding. At the worst, it will suck your hand into the spinning blade and send your fingers flying, or perhaps embed a piece of wood in your chest or forehead. Riving knives mitigate such catastrophes by preventing the stock from touching the blade as it rotates up out of the table. Contractor table saws like [Craft Andu]’s little Makita are often stripped of such niceties, so he set about adding one. The essential features of a proper riving knife are being the same width as the blade, wrapping closely around it, raising and lowering with the blade, and not extending past the top of the blade. [Craft Andu] hit all those points with his DIY knife, and the result is extra safety with no inconvenience.

It only takes a few milliseconds to suffer a life-altering injury, so be safe out there. Even if you’re building your own table saw, you owe it to yourself.

Continue reading “Adding a Riving Knife for Table Saw Safety”

Ask Hackaday: SawStop — Bastion of Safety or Patent Troll

At first glance, SawStop seems like a hacker’s dream. A garage tinkerer comes up with a great idea, builds a product around it, and the world becomes a better place. As time has gone on, other companies have introduced similar products. Recently, SawStop successfully stopped Bosch from importing saws equipped with their Reaxx safety system into the USA. This not only impacts sales of new saws, but parts for existing equipment. Who gets screwed here? Unfortunately, it’s the owners of the Bosch saws, who now have a safety feature they might not be able to use in the future. This has earned some bad press for SawStop in forums and on websites like Reddit, where users have gone as far as to call SawStop a patent troll. Is that true or just Internet puffery? Read on and decide for yourself.

Continue reading “Ask Hackaday: SawStop — Bastion of Safety or Patent Troll”

Sharpening Drills Bits the Hard Way

Drill bits are so cheap that when one is too chowdered up to keep working, we generally just toss it out. So you might expect a video on sharpening drill bits to be somewhat irrelevant, but [This Old Tony] makes it work.

The reason this video is worth watching is not just that you get to learn how to sharpen your bits, although that’s an essential metalworker’s skill. Where [This Old Tony]’s video shines is by explaining why a drill bit is shaped the way it is, which he does by fabricating a rudimentary twist drill bit from scratch. Seeing how the flutes and the web are formed and how all the different angles interact to cut material and transport the swarf away is fascinating. And as a bonus, knowing what the angles do allows you to customize a grind for a special job.

[This Old Tony] may be just a guy messing around in his shop, but he’s got a wealth of machine shop knowledge and we always look forward to seeing what he’s working on, whether it’s a homemade fly cutter or a full-blown CNC machine.

Continue reading “Sharpening Drills Bits the Hard Way”

Hackaday Prize Entry: Oscilloscope for the Masses

If you head down to your local electronics supply shop (the Internet), you can pick up a quality true-RMS multimeter for about $100 that will do almost everything you will ever need. It won’t be able to view waveforms, though; this is the realm of the oscilloscope. Unlike the multimeter’s realistic price point, however, a decent oscilloscope is easily many hundreds, and often thousands, of dollars. While this is prohibitively expensive for most, the next entry into the Hackaday Prize seeks to bring an inexpensive oscilloscope to the masses.

The multiScope is built by [Vítor] and is based on the STM32-O-Scope which is built around a STM32F103C8T6 microcontroller. This particular chip was chosen because of its high clock speed and impressive analog-to-digital resolution, which are two critical specifications for any oscilloscope. This particular scope has an inductance meter built-in as well, which is another feature which your otherwise-capable multimeter probably doesn’t have.

New features continue to get added to this scope by [Vítor]. Most recently he’s added features which support negative voltages and offsets. His particular scope is built inside of a model car, too, but we believe this to be an optional feature.

Need to Hold Something? Build a Custom Vise

The only thing better than making a cool project is making a cool project that helps make more projects! Case in point, [Greg Stephens] and [Alex] wanted to colorize steel bearings for use in a Newton’s Cradle desk toy. After trying out a torch and not liking it, [Greg] and [Alex] decided to build custom aluminum vise to hold the sphere while it sits in the magnetic induction forge.

Their vise–they call it the Maker’s Vise0–isn’t just a one-off project to help make the cradle. [Alex] and [Greg] aspire to create a tool useable for a wide variety of projects. They wanted it to be oil-less and it had to be customizable. Ideally it would also have an acceptable grip strength, be easy to use, and look good on the bench.

[Greg] and [Alex] have set up a Hackaday.io project, and their logs show a lot of progress with two finished iterations of the vise and a variety of 3D-printed and cast parts to go with. Recently they brought in a 2,000-lb. load test and tested it on their vise collection, including the two prototypes. Version one rated at 500 lbs. reasonable clamping pressure–meaning they didn’t exert themselves to max out the pressure. Version two sits at 800 lbs., still nothing like a desk vise but far stronger than a Panavise, for instance.

Their magnetic induction forge project was also a success, with the team able to quickly change the color of a steel ball. Check out a video after the break…

Continue reading “Need to Hold Something? Build a Custom Vise”

brdMaker, a DIY Pick and Place Machine

A small, desktop pick and place machine has obvious applications for hackerspaces, small companies, and even home labs. However, despite multiple efforts, no one has come up with a solution that’s both better and cheaper than buying a used, obsolete pick and place machine. [Mika]’s brdMaker is yet another attempt at a desktop chipshooter, and while the prototype isn’t done yet, it’s a fantastic build that might soon be found in your local electronics lab.

The easy part of any pick and place machine is a Cartesian frame. This has been done over and over again by the 3D printing and CNC communities, and the brdMaker is no exception. [Mika]’s robot is a 600 by 600 mm CNC frame powered by NEMA 23 motors. So far, so good.

The tricky part of a pick and place machine is working with the fiddly bits. This means feeders and machine vision. There are several different options for feeders including a ‘drag’ feeder that uses the vacuum nozzle tip to move a reel of parts along, and a slightly more complicated but vastly more professional feeder. A machine needs to see the parts it’s putting down, so [Mika] is using two cameras. One of these cameras is mounted on the toolhead and looks surprisingly similar to a USB microscope. The other camera is mounted in the frame of the machine to look at the bottom of a part. This camera uses 96 LEDs to illuminate the component and find its orientation.

[Mika]’s brdMaker still has a long way to go, but there are indications the market is ready for a cheap, easy to use desktop pick and place machine. The Chipsetter, an exquisitely designed pick and place machine revealed at last year’s NY Maker Faire had an unsuccessful Kickstarter, but they’re still chugging along.