Open-Source Parametric CAD in Your Browser

Until recently, computer-aided design (CAD) software was really only used by engineering companies who could afford to pay thousands of dollars a year per license. The available software, while very powerful, had a very high learning curve and took a lot of training and experience to master. But, with the rise of hobbyist 3D printing, a number of much more simple CAD programs became available.

While these programs certainly helped makers get into 3D modeling, most had serious limitations. Only a few have been truly open-source, and even fewer have been both open-source and parametric. Parametric CAD allows you to create 3D models based on a series of parameters, such as defining a cube by its origin and dimensions. This is in contrast to sculpting style 3D modeling software, which is controlled much more visually. The benefit of parametric modeling is that parameters can be changed later, and the model can be updated on the fly. Features can also be defined mathematically, so that they change in relation to each other.

While still in its infancy, JS.Sketcher is seeking to fill that niche. It is 100% open-source, runs in your browser using only JavaScript, and is fully parametric (with both constraints and editable dimensions). At this time, available features are still pretty limited and simple. You can: extrude/cut, revolve, shell, and do boolean operations with solids. More advanced features aren’t available yet, but hopefully will be added in the future.

Continue reading “Open-Source Parametric CAD in Your Browser”

Dead-Bug Logic Probe in a Magic Marker

Logic probes are simple but handy tools that can be had for a couple of bucks. They may not be the sexiest pieces of test gear, nor the most versatile, but they have their place, and building your own logic probe is a great way to understand the tool’s strength and weaknesses.

[Jxnblk]’s take on the logic probe is based on a circuit by [Tony van Roon]. The design hearkens back to a simpler time and is based on components that would have been easy to pick up at any Radio Shack once upon a time. The logic section is centered on the venerable 7400 quad 2-input NAND gate in the classic 14-pin DIP format. The gates light separate LEDs for high and low logic levels, and a 555 timer chip in a one-shot configuration acts as a pulse stretcher to catch transients. The DIP packages lend themselves to quick and dirty “dead bug” construction, and the whole thing fits nicely into a discarded marking pen.


It’s a simple build and a nice form factor for a useful tool, but for an even slimmer package like an old syringe you’ll probably have to go with SMD components. And when you graduate from the simple logic probe, you might want to check out the capabilities of this smart probe.

Jump into Pogo

A lot of modern PCBs have small pads with no components attached. They are often used as test points, JTAG ports, or programmer connections. There’s no connector on the board, just pads. To use those, test equipment and programmers utilize pogo pins. These are small pins with a spring inside, reminiscent of a tiny pogo stick.

To use pogo pins effectively, you need a way to hold them in the right position and something to put pressure on them while they are in use. [Joshua Brooks] used a strip board to hold them in place and clothes pin to keep the pressure on them.

Continue reading “Jump into Pogo”

Clear the Air Around Your CNC Router with a Custom Dust Shroud

Using a CNC router is a dusty business if your material of choice is wood. Sure, you can keep things tidy by chasing the cutter around the table with a shop vac, but that sort of takes the fun out of having a machine that can make cuts without you. The big boy machines all have integrated dust collection, and now you can too with this 3D-printed CNC router dust shoe.

Designed specifically for the X-Carve with a DeWalt 611 router, [Mark Edstrom]’s brush is a simple design that’s almost entirely 3D printed. The shroud encloses the router body and clamps to the mounting bracket, totally surrounding the business end of the machine. The cup is trimmed with a flexible fringe to trap the dust and guide it to the port that fits a small (1-1/4″ diameter) shop vac hose. The hose is neatly routed along the wiring harness, and the suction is provided by a standard shop vac.

Files for the cup are up on Thingiverse; we suspect it’d be easy to modify the design to work with other routers and dust collectors. You might even find a way to shroud a laser cutter and capture the exhaust with a DIY filter.

Continue reading “Clear the Air Around Your CNC Router with a Custom Dust Shroud”

Cheap Chainsaw Teardown Reveals Buried Treasures

People seem to have a love-hate relationship with Harbor Freight, and it mostly seems that they love to hate the purveyor of discount tools. This is not without cause — any number of HF tools have fallen apart in our hands. But there are some gems to be found amid the dregs and dross of your local branch of the 700-store US chain, as long as you match the tool to your needs and manage your expectations.

Now, we’d normally shy away from any electric chainsaw, especially a cordless saw, and doubly so a Harbor Freight special. But as [Professor Charles] demonstrates with his detailed and humorous teardown, the Lynxx 40-volt cordless 14″ chainsaw might be worth picking up just for harvesting parts. First there’s the battery pack, which is chock full of 18650 lithium cells. [Professor Charles] leads us on a detailed tour of the design compromises of the battery and charger and is none too impressed with either, but he clearly understands what it means to build to a price point. While [Charles] found the stock motor controller somewhat anemic, the real buried treasure in the tool is a huge brushless motor, powerful enough to “throw an 8-inch Vise Grip at you” during a (not so) locked rotor test.

The whole teardown is enlightening as to the engineering decisions that go into mass-market tools, so even if you can’t think of something to do with this motor, the article is worth a read. At $169 for the Lynxx (before the 20% coupon in your Sunday paper every week) it’s a little pricey to buy just to harvest parts, but it wouldn’t be the first HF tool to suffer that fate. We’ll bet these things will start showing up broken on the secondary market for a song, and if the [Professor]’s assessments are right, it likely won’t be the motors that fail.

Extech Power Supply: If it Ain’t Broke, Fix it Anyway

[Wolf] came into possession of an Extech power supply that wasn’t quite in working order. It has been used in battery manufacturing and was fairly corroded. He was able to fix it but found there was an issue with the power supply that wasn’t a defect. By design when you turn off the outputs, the voltmeters read zero. That means you can’t adjust the voltage to a known value without turning on the outputs. Sure, you ought to disconnect things before you adjust, but you can only hope you’ll remember.

At first, he tried to use the existing output control switch, but that really cut power. Instead, he turned to a small microcontroller board usually used for servo control. He added a few nice looking pushbuttons to the front panel. There was plenty of room in the enclosure to mount the controller board and four relays. You can see the final result in the video below.

Continue reading “Extech Power Supply: If it Ain’t Broke, Fix it Anyway”

Hybrid Raspberry Pi + PIC32 = Oscilloscope and Function Generator

The PicBerry is a student final project by [Advitya], [Jeff], and [Danna] that takes a hybrid approach to creating a portable (and affordable) combination digital oscilloscope and function generator. It’s based on the Raspberry Pi, features an intuitive Python GUI, and can generate and measure simultaneously.

But wait! The Raspberry Pi is a capable little Linux machine, but meeting real-time deadlines isn’t its strong suit. That’s where the hybrid approach comes in. The Pi takes care of the user interface and other goodies, and a PIC32 over SPI is used for 1 MHz sampling and running a DAC at 500 kHz. The idea of combining them into PicBerry is to get the best of both worlds, with the Pi and PIC32 each doing what they are best at. The readings are sent in batches from the PIC32 to the Pi, where the plot is updated every 30 ms so that user does not perceive any visible lag.

The project documentation notes that improvements can be made, the speeds are a far cry from regular bench equipment, and the software lacks some typical features such as triggering, but overall not bad at all for under $50 of parts. In fact, there are hardly any components at all beyond the Raspberry Pi, the PIC32, and a MCP4822 digital-to-analog converter. A short demo video is embedded below.

Continue reading “Hybrid Raspberry Pi + PIC32 = Oscilloscope and Function Generator”