Barduino, Now With Facebook Integration

Bar

We’ve seen BarBots that will automagically pour you a drink, but how about one with RFID? How about one with Facebook integration, so your friends know how much of a lush you are? Wait. Facebook already tells them that. Huh.

[Andy] and [Daniel]‘s latest build follows on the heels of a lot of similar cocktail bots; an Arduino controls a few solenoid valves connected to a CO2 supply and a few bottles of liquor and mixers that allow drinks to be dispensed at the push of the button. Where this project gets interesting is its use of RFID and Facebook.

The user interface was coded for Windows 7, with an RFID tag (ostensibly issued to each guest) allowing a unique login that checks an SQL server to see what privileges the user has. The app pulls the user’s Facebook profile photo down and displays it in the corner of the screen, and with the server keeping track of how many drinks (and of what kind) they had, with the right permissions it should be possible to post that info to their wall. Because we all know what you did last night, even if you don’t.

Interactive Boozeshelf is its own Dance Party

boozeshelf

[Jeremy] refused to settle on your typical alcohol storage options, and instead created the Boozeshelf. Like most furniture hacks, the Boozeshelf began as a basic IKEA product, which [Jeremy] modified by cutting strips of wood to serve as wine glass holders and affixing the front end of a wine rack at the base to store bottles.

In its standard operating mode the Boozeshelf lies dark and dormant. Approaching it triggers a cleverly recessed ultrasonic sensor that gently illuminates some LEDs, revealing the shelf’s contents. When you walk away, then lights fade out. An Arduino Mega running [Jeremy's] custom LEDFader library drives the RGB LED strips, which he wired with some power MOSFETS to handle current demands.

[Jeremy] didn’t stop there, however, adding an additional IR receiver that allows him to select from three different RGB LED color modes: simple crossfading, individual shelf colors (saved to the on-board EEPROM), or the festive favorite: “Dance Party Mode.” Stick around after the break to see [Jeremy] in full aficionado attire demonstrating his Boozeshelf in a couple of videos. Considering blackouts are a likely result of enjoying this hack, we recommend these LED ice cubes for your safety.

[Read more...]

Generating electricity from alcohol

thermoelectric-generator-lamp

Here’s a thermoelectric generator which [x2Jiggy] built. The concept uses heat from a flame, biased against cooler temperatures produced by that huge heat sink making up the top portion of the build to produce electricity via the Peltier effect.

The build is passively cooled, using a sync assembly that takes advantage of heat pipes to help increase the heat dissipation. A nearly flat heat sink makes up the mounting surface for the hot side, which faces down toward a flame driving the generator. [x2Jiggy] started the project by using a can, wick, and olive oil as the heat source. He managed to get about 2V out of the system with this method. What you see here is the second version. It swaps out the olive oil lamp for an alcohol stove. The cans with holes punched in them act as a wind screen while also providing a stable base. This rendition produces about 3V, but it doesn’t sound like there are any precise measurements of what it can do under load.

Robot bartender mixes a mean drink

robot-bartender-mixes-mean-drink

Back in 2002, [Dave] came across a discarded PUMA robotic arm and quickly set his sights on turning it into a bartender to serve drinks at his parties. Unfortunately, the arm was far from operational and being an engineer at his day job meant that working on this project was the last thing he wanted to do when he came home. So, progress trickled along slowly for years. He eventually announced a public deadline to spur him to action, and this years Pi(e) party saw the official debut of  ‘Sir-Mix-a-Bot’ – the robot bartender.

With the exception of having to build a new hand for it, mechanically, the arm was still in good condition when [Dave] found it. The electronics were another story however. Using some off the shelf components and his own know-how, [Dave] had to custom build all the controls. The software was written from scratch as well. (He lucked out and had help from his brother who was taking a Ph.D. program in robotics at the time).

As if the robotics aspect of the project wasn’t enough, [Dave] even created a beautiful custom table that both houses and displays his masterpiece. The quality of craftsmanship on his table alone is worth the time to check this out – there’s a short video after the break.

[Thanks Dave]

[Read more...]

Gas sensor suite built with Gadgeteer modules

gadgeteer-gas-sensor-suite

[Blake] just finished a gas sensor suite built from Gadgeteer parts. The three sensors are the cylindrical towers along the left hand side of the assembly. The one at the top (with the orange ring) is an alcohol sensor. The middle one senses ammonia and the lower sensor measures air quality. Also rolled into the mix are temperature and humidity sensors.

You can collect a lot of data with this type of setup. To keep it organized [Blake] used the ThingSpeak interface. Using the NIC in the upper right he uploads the measurements for real-time graphing. The setup is explained in detail in the video after the break, including a test with some cleaning ammonia.

We haven’t tried out the Gadgeteer system for ourselves yet. But you’ve got to admit that the ribbon cable connector system the family of parts uses really helps to keep a rather complicated setup like this one nice and tidy.

[Read more...]

LED ice cubes prevent alcohol induced blackouts

cube

On November 23rd last year, [Dhairya] attended a little shindig at MIT. Three drinks into the night, he blacked out and woke up in the hospital the next day. It was an alcohol-induced blackout, and like all parties at MIT, there’s an ingenious solution to [Dhairya]‘s problem.

[Dhairya] came up with an alcohol-aware ice cube made of a coin cell battery, an ATtiny microcontroller, and an IR transceiver are molded into an edible gelatin ice cube. The microcontroller counts the number of sips per drink, and after one glass of adult beverage changes the color of the flashing LED from green to yellow. After two drinks the LED changes from yellow to red, signaling [Dhairya] to slow down.

If [Dhairya] feels the night is too young and keeps on drinking, the IR transmitter signals to his cell phone to send a text to a friend telling them to go take [Dhairya] home.

Less than three weeks after waking up in the hospital, [Dhairya] tested out his glowing ice cubes at another party. Everything performed wonderfully, even if he admits his creation is a little crude. A neat piece of work, and we can’t wait to see an update to this project.

[Read more...]

Red-bullet: cooking stove from cans, fueled by gas additive

A couple of beverage containers and a little bit of fuel additive bring together this aluminum can stove project. When lit it shoots flames out each of those holes around the top to heat the vessel resting upon it. [Peter Geiger] calls it the Red-Bullet because one of the stove pieces started as a Red Bull can and the other piece was a Coors (aka silver bullet).

This is basically an alcohol stove. We remember seeing a very well designed version of the penny stove several years back. This is different as it uses a side burner so the stove itself functions as the kettle stand. [Peter] started by cutting the Red Bull can just a bit taller than the final height. He then inserted the top portion of one of those aluminum beer cans that are shaped like glass bottles. The neck was lopped off and inverted. It is joined with the other can base using JB weld and by rolling the aluminum in on itself. After that has dried the holes are added and it’s filled with HEET from a yellow bottle. This gasoline additive is meant to sequester water and keep your gas line from freezing. The yellow bottle is mainly alcohol, the red is methanol so make sure you use the right one!