Hackaday Links: May 24, 2015

A few months ago, we heard about a random guy finding injection molds for old Commodore computers. He did what the best of us would do and started a Kickstarter to remanufacture these cool old cases. It’s the best story on retrocomputing this year, and someone else figured out they could remanufacture Commodore 64 keycaps. If you got one of these remanufactured cases, give the keycaps a look.

Remember this Android app that will tell you the value of resistors by reading their color code. Another option for the iOS crowd was presented at Maker Faire last weekend. It’s called ResistorVision, and it’s perfect for the colorblind people out there. An Android version of ResistorVision will be released sometime in the near future.

A few folks at Langly Research Center have a very cool job. They built a hybrid electric tilt wing plane with eight motors on the wing and two on the tail. It’s ultimately powered by two 8 hp diesel engines that charge Liion batteries. When it comes to hydrocarbon-powered hovering behemoths, our heart is with Goliath.

A bottom-of-the-line avionics panel for a small private plane costs about $10,000. How do you reduce the cost? Getting rid of FAA certification? Yeah. And by putting a Raspberry Pi in it. It was expoed last month at the Sun ‘N Fun in Florida, and it’s exactly what the pilots out there would expect: a flight system running on a Raspberry Pi. It was installed in a Zenith 750, a 2-seat LSA, registered as an experimental. You can put just about anything in the cabin of one of these, and the FAA is okay with it. If it’ll ever be certified is anyone’s guess.

Cracking open an ancient avionics gyroscope

This artificial horizon might as well have come from an alien ship. [Mike] somehow manages to get his hands on most interesting equipment, this time its a very old piece of avionics equipment. The mechanical gyroscope functioned as the artificial horizon, and he’s going to take us inside for a look. He doesn’t spend quite as much time on it as he did that thermal imaging camera, but this electro-mechanical odyssey is just as interesting.

To get the accuracy needed to help keep a plane in the air (well to keep the pilot well-informed anyway) the device needed to be very well manufactured. [Mike] comments several times along the way on how the different rotating parts are so well-balanced and machined that they seem nearly frictionless. It appears that a lot of the positional feedback depends on wirewound resistor rings which connect to a rotating piece via a series of very fine spring wires. As the parts rotate the resistance changes and that’s what gives the feedback. There are also mercury switches to help along the way.

He does his best to explain, but to us the inner workings are still a big mystery. See if you can get a clearer picture from the video after the break.

Continue reading “Cracking open an ancient avionics gyroscope”