Printer Scrap Becomes FPGA Devboard

These days, if you want to start learning about FPGAs, it can be a daunting experience. There’s a huge variety of different platforms and devboards and it can be difficult to know where to start. [RoGeorge] decided to take a different tack. Like a 16-year-old drag racer, he decided to run what he brung – a printer control panel cum FPGA development board (Romanian, get your Google Translate on).

[RoGeorge] was lucky enough to score a couple of seemingly defective control panels from HP Laserjets discarded by his workplace. Seeing potentially good parts going to waste, like keypads and LCDs, he decided to investigate them further – finding a 50,000 gate Xilinx Spartan IIE running the show. Never one to say no to opportunity, [RoGeorge] dived in to learning how to work with FPGAs.

The forum posts are a great crash course in working with this sort of embedded FPGA platform. [RoGeorge] covers initial mapping of the peripherals on the board & finding a JTAG connector and programming solution, before moving on to basic FPGA programming and even covers the differences between sequential programming on microcontrollers and the parallel operation of FPGAs. Even if you don’t intend to get down and dirty with the technology, spend half an hour reading these posts and you’ll be far more knowledgeable about how they work!

In the end, [RoGeorge] showed how to teach yourself to work with FPGAs for the price of a couple of programming cables – not a mean feat by any means. It’s a testament to the hacker spirit, and reminds us of [SpriteTM]’s efforts in hacking hard drive controllers.

Ingenious use of 3D Printer gives Simba the Mane he deserves

Here at Hackaday, we love clever 3D prints. This amazing lion statue remixed by [ _primoz_], makes us feel no different. It is no secret that FDM 3D printers have come a long way, propelled by the enthusiastic support from the open source community.

However, FDM 3D printers have some inherent limitations; some of which arise from a finite print nozzle diameter, tracing out the 3D object layer by layer. Simply put, some print geometries and dimensions are just unattainable. We discussed the solution to traditional FDM techniques being confined to Planer layers only in a previous article.

The case in point here is a 3D printed lion whose original version did not fully capture its majestic mane. [_primoz_] solution was to construct a support cylinder around the head and form the actual hair as a series of planar bristles, which were one extrusion wide.

6d2b2c7253516ff7b54ee1d3be0aa6a7_display_large

This was followed by some simple post processing, where a heat gun was used to form the bristles into a dapper mane.

The result is rather glorious and we can’t wait for someone to fire up a dual extruder and bring out the flexible filament for this print!

[via Thingiverse]

Printer Vulnerabilites Almost as Bad as IoT

Recently ZDNet and Gizmodo published articles outlining a critical flaw in a large array of personal printers. While the number of printers with this flaw is staggering, the ramifications are even more impressive. Ultimately, any of these printers could have documents sent to them stolen even if the document was only intended to be printed as a hard copy.

Luckily the people responsible for this discovery are white-hat in nature, and the release of this information has been made public so the responsible parties can fix the security flaws. Whether or not the “responsible party” is the manufacturer of the printer, though, is still somewhat unclear because part of the exploit takes advantage of a standard that is part of almost all consumer-grade printers. The standard itself may need to be patched.

Right now, however, it doesn’t seem clear exactly how deep the rabbit hole goes. We all remember the DDoS attack that was caused by Internet of Things devices that were poorly secured, and it seems feasible that networked printers could take some part in a similar botnet if a dedicated user really needed them. At the very least, however, your printed documents might not be secure at all, and you may be seeing a patch for your printer’s firmware in the near future.

 

Vintage IBM Daisywheel Prints Again after Reverse Engineering

Just before the dawn of the PC era, IBM typewriters reached their technical zenith with the Wheelwriter line. A daisy-wheel printer with interchangeable print heads, memory features, and the beginnings of word processing capabilities, the Wheelwriters never got much time to shine before they were eclipsed by PCs. Wheelwriters are available dirt cheap now, and like many IBM products are very hackable, as shown by this simple Arduino interface to make a Wheelwriter into a printer.

[Chris Gregg] likes playing with typewriters – he even got an old Smith Corona to play [Leroy Anderson]’s The Typewriter – and he’s gotten pretty good with these largely obsolete but lovable electromechanical relics. Interfacing a PC to the Wheelwriter could have been as simple as scrounging up an original interface card for the machine, but those are like hen’s teeth, and besides, where’s the sport in that? So [Chris] hooked a logic analyzer to the well-labeled port that would have connected to the interface card and reverse engineered the somewhat odd serial protocol by banging on keys. The interface he came up with for the Wheelwriter is pretty simple – just a Light Blue Bean Plus and a MOSFET to drive the bus high and low for the correct amount of time. The result is what amounts to an alphanumeric printer, but with a little extra code some dot-matrix graphics are possible too.

Having spent a lot of time reverse engineering serial comms, we can appreciate the amount of work this took to accomplish. Looking to do something similar but don’t have the dough for a logic analyzer? Maybe you can free up $22 and get cracking on a similarly impressive hack.

Continue reading “Vintage IBM Daisywheel Prints Again after Reverse Engineering”

3D Printed Mini-Printer Enables Obsession With Lists

When going about a busy day, a hard copy listing all your tasks helps if you aren’t inclined to pull up a notepad — or whatever app you use — on your phone each time; doubly so if you want to pin it up in one place to refer to. Besides, using a full sheet of paper for a few items is impractical — and wasteful. To that end, [Jed Hodson] has concocted a mini printer for all your listing needs.

[Hodson] designed and 3D printed the case, making the files available for download and instructions on how to assemble it. Being an IoT device, the printer uses a Photon board to connect to the Internet, wherein Microsoft Flow is used to liaise between the Adafruit printer and Wunderlist — the list app [Hodson]’s chosen for this project.

Continue reading “3D Printed Mini-Printer Enables Obsession With Lists”

DIY Mini Printer is 95% Wood, Prints Tiny Cute Images

This little DIY 64×64 graphical printer by [Egor] is part pen plotter in design, somewhat dot matrix-ish in operation, and cleverly designed to use unmodified 9G servos. The project page is all in Russian (translation to English here) but has plenty of photos that make the operation and design clear. Although nearly the entire thing is made from laser-cut wood, [Egor] says that a laser cutter is optional equipment. The first version was entirely cut with hand tools.

screenshot-2016-12-06-10-49-13Small DIY CNC machines driven over a serial line commonly use Arduinos and CD-ROM drive guts (like this Foam Cutter or this Laser Paper Cutter) but this build uses its own custom rack-and-pinion system, and has some great little added details like the spring-loaded clip to hold paper onto the print pad.

The frame and parts (including all gears) are laser-cut from 4 mm plywood and the unit is driven by three small servos. A simple Java program processes images and an Arduino UNO handles the low-level control. A video of everything in action is embedded below.
Continue reading “DIY Mini Printer is 95% Wood, Prints Tiny Cute Images”

No-Etch Circuit Board Printing

If you’ve ever tried to build a printed circuit board from home, you know how much of a pain it can be. There are buckets of acid to lug around, lots of waiting and frustration, and often times the quality of the circuits that can be made traditionally with a home setup isn’t that great in the end. Luckily, [Rich] has come up with a way that eliminates multiple prints and the acid needed for etching.

His process involves using a laser printer (as opposed to an inkjet printer, as is tradition) to get a layer of silver adhesive to stick to a piece of paper. The silver adheres to the toner like glitter sticks to Elmer’s glue, and allows a single pass of a laser printer to make a reliable circuit. From there, the paper can be fastened to something more solid, and components can be reflow soldered to it.

[Rich] does post several warnings about this method though. The silver is likely not healthy, so avoid contact with it, and when it’s applied to the toner an indeterminate brown smoke is released, which is also likely not healthy. Warnings aside, though, this is a great method for making home-made PCBs, especially if you don’t want tubs of acid lying around the house, however useful.

Thanks to [Chris] for the tip!

Continue reading “No-Etch Circuit Board Printing”