Over-engineering Ding Dong Ditch

One day, [Samy]’s best friend [Matt] mentioned he had a wireless doorbell. Astonishing. Even more amazing is the fact that anyone can buy a software defined radio for $20, a small radio module from eBay for $4, and a GSM breakout board for $40. Connect these pieces together, and you have a device that can ring [Matt]’s doorbell from anywhere on the planet. Yes, it’s the ultimate over-engineered ding dong ditch, and a great example of how far you can take practical jokes if you know which end of a soldering iron to pick up.

Simply knowing [Matt] has a wireless doorbell is not enough; [Samy] needed to know the frequency, the modulation scheme, and what the doorbell was sending. Some of this information can be found by looking up the FCC ID, but [Samy] found a better way. When [Matt] was out of his house, [Samy] simply rang the doorbell a bunch of times while looking at the waterfall plot with an RTL-SDR TV tuner. There are a few common frequencies tiny, cheap remote controls will commonly use – 315 MHz, 433 MHz, and 900 MHz. Eventually, [Samy] found the frequency the doorbell was transmitting at – 433.8 MHz.

After capturing the radio signal from the doorbell, [Samy] looked at the audio waveform in Audacity. It looked like this doorbell used On-Off Keying, or just turning the radio on for a binary ‘1’ and off for a binary ‘0’. In Audacity, everything the doorbell transmits becomes crystal clear, and with a $4 434 MHz transmitter from SparkFun, [Samy] can replicate the output of the doorbell.

For the rest of the build, [Samy] is using a mini GSM cellular breakout board from Adafruit. This module listens for any text message containing the word ‘doorbell’ and sends a signal to an Arduino. The Arduino then sends out the doorbell code with the transmitter. It’s evil, and extraordinarily over-engineered.

Right now, the ding dong ditch project is set up somewhere across the street from [Matt]’s house. The device reportedly works great, and hopefully hasn’t been abused too much. Video below.

Continue reading “Over-engineering Ding Dong Ditch”

HackRF Blue

For anyone getting into the world of Software Defined Radio, the first purchase should be an RTL-SDR TV tuner. With a cheap, $20 USB TV tuner, you can listen to just about anything between 50 and 1750 MHz. You can’t send, the sample rate isn’t that great, but this USB dongle gives you everything you need to begin your explorations of the radio spectrum.

Your second Software Defined Radio purchase is a matter of contention. There are a lot of options out there for expanding a rig, and the HackRF is a serious contender to expand an SDR rig. You get 10 MHz to 6 Gigahertz operating frequency, 20 million samples per second, and the ability to transmit. You have your license, right?

Unfortunately the HackRF is a little expensive and is unavailable everywhere. [Gareth] is leading the charge and producing the HackRF Blue, a cost-reduced version of the HackRF designed by [Michael Ossmann].

The HackRF Blue’s feature set is virtually identical, and the RF performance is basically the same: both the Blue and the HackRF One can get data from 125kHz RFID cards. All software and firmware is interchangeable. If you were waiting on another run of the HackRF, here ‘ya go.

[Gareth] and the HackRF Blue team are doing something rather interesting with their crowdfunding campaign: they’re giving away Blues to underprivileged hackerspaces, with hackerspaces from Togo, Bosnia, Iran, India, and Detroit slated to get a HackRF Blue if the campaign succeeds.

Thanks [Praetorian] and [Brendan] for sending this in.

Continue reading “HackRF Blue”

Extremely Detailed FMCW Radar Build

A lot of hackers take the “learn by doing” approach: take something apart, figure out how it works, and re-purpose all of the parts. [Henrik], however, has taken the opposite approach. After “some” RF design courses, he decided that he had learned enough to build his own frequency-modulated continuous wave radar system. From the level of detail on this project, we’d say that he’s learned an incredible amount.

[Henrik] was looking to keep costs down and chose to run his radar in the 6 GHz neighborhood. This puts it right in a frequency spectrum (at least in his area) where radar and WiFi overlap each other. This means cheap and readily available parts (antennas etc) and a legal spectrum in which to operate them. His design also includes frequency modulation, which means that it will be able to determine an object’s distance as well as its speed.

There are many other design considerations for a radar system that don’t enter into a normal project. For example, the PCB must have precisely controlled trace widths so that the impedance will exactly match the design. In a DC or low-frequency AC system this isn’t as important as it is in a high-frequency system like this. There is a fascinating amount of information about this impressive project on [Henrik]’s project page if you’re looking to learn a little more about radio or radar.

Too daunting for you? Check out this post on how to take on your first radar project.

$2 FM Transmitter for Raspberry Pi

We love re-purposed consumer gear. [Tobias] sent us the link to his project to that uses a cheap, discontinued cellphone gadget to create a Raspberry Pi controlled FM radio transmitter.

The Sony-Ericsson MMR-70 radio transmitter apparently used to connect to a cell phone and broadcast music. But the Walkman cellphones in question are a little bit old in the tooth, so one can buy the transmitter units for cheap on the resale market. What makes the transmitters even more interesting is that you can activate and deactivate the radio, change frequency or output power, and even send RDS station and song information.

It turns out (link in German) that the radios have an AVR ATMega32 microcontroller and a NS73 radio transmitter module, which can be entirely controlled over I2C. (Schematic here as PDF.) The units also have handy test points strewn all around. Once the test points were mapped out, one could completely ignore the on-board AVR microcontroller and control the FM transmitter module directly using the Raspberry Pi’s I2C outputs.

And that’s where [Tobias] stepped in. He wrote an I2C daemon for the Raspberry Pi that lets you control the FM transmitter via simple commands. All you have to do is solder up a bunch of test points, install [Tobias]’s software, write a batch script, and you’re on the air. For instance, this makes building a FM radio retransmitter for online streamed audio a one-day project. You can see his working example on youtube. Of course, you’ll want a web-based remote control interface to go with that.

If you’re interested in hacking along, and don’t have a Raspberry Pi application in mind, Sparkfun used to sell the NS73 radio transmitter so you can find lots of good information about the chip. We’d love to see a stand-alone broadcasting gizmo that actually utilizes the onboard AVR chip, but our hats are off to [Tobias] for making the Raspberry Pi version so accessible.

Hackaday Prize Finalist: A Network of Satellite Ground Stations

There are astonishing things you can do with a network of sensors spread across the globe, all connected to the Internet. Thousands of people have already installed hardware to detect lightning and flightaware gives out subscriptions to their premium service to anyone who will listen in to airplane transponders and send data back to their servers. The folks behind SatNOGS, one of the five finalists for The Hackaday Prize are using this same crowdsourced data collection for something that is literally out of this world: listening to the ever-increasing number of amateur satellites orbiting the planet.

There are dozens of cubesats and other amateur satellites flying every year, and they have become an extremely popular way of experimenting in a space environment, giving some budding engineers an awesome project in school, and testing out some technologies that are just too weird for national space agencies. The problem with sending one of these birds up is getting the data back down; a satellite will pass above the horizon of a single location only a few times a day, and even then for only minutes at a time. The SatNOGS team hopes to change that by planting receivers all around the globe, connecting them to the Internet, and hopefully providing real-time telemetry from dozens of orbiting satellites.

[Pierros] from the SatNOGS team was kind enough to sit down and answer a few questions for us about his entry to The Hackaday Prize. That’s below, right after their finalist video. Some of the SatNOGS team will also be at our Munich event where we announce the winner of the Prize.

Continue reading “Hackaday Prize Finalist: A Network of Satellite Ground Stations”

The Internet of Things Chip Gets a New Spectrum

Last year we learned about Weightless, an Internet of Things chip that solves all the problems of current wireless solutions. It’s low power and has a 10-year battery life (one AA cell), the hardware should cost around $2 per module, and the range of the Weightless devices range from 5+km in urban environments to 20-30km in rural environments. There haven’t been many public announcements from the Weightless SIG since the specification was announced, but today they’re announcing Weightless will include an additional spectrum, the 868/915 MHz ISM spectrum.


The original plan for Weightless was to use the spectrum left behind by UHF TV – between 470 and 790MHz. Regulatory agencies haven’t been moving as fast as members of the Weightless SIG would have hoped, so now they’re working on a slightly different design that uses the already-allocated ISM bands. They’re not giving up on the TV whitespace spectrum; that’s still part of the plan to put radio modules in everything. The new Weightless-N will be available sooner, though, with the first publicly available base station, module, and SDK arriving sometime next spring.

Weightless has put up a video describing their new Weightless-N hardware; you can check that out below. If you want the TL;DR of how Weightless can claim such a long battery life and huge range from an Internet of Things radio module, here’s an overly simplified explanation: power, range, and bandwidth. Pick any two.

Continue reading “The Internet of Things Chip Gets a New Spectrum”

Dusty Junk-bin Downconverter Receives FM on an AM Radio

This amateur radio hack is not for the faint of heart! With only three transistors (and a drawer-full of passive parts), [Peter Parker, vk3ye] is able to use a broken-looking AM car radio to receive FM radio signals (YouTube link) on 2 meters, an entirely different band.

There are two things going on here. First, a home-made frequency downconverter shifts the 147 MHz signal down to the 1 MHz neighborhood where the AM radio can deal with it. Then, the AM radio is tuned just slightly off the right frequency and the FM signal is slope detected.

The downconverter consists of a local tuned oscillator and a mixer. The local oscillator generates an approximate 146 MHz signal from an 18 MHz crystal, accounting for two of the three transistors. Then this 146 MHz signal and the approximately 147 MHz signal that he wants to listen to are multiplied together (mixed) using the third transistor.

If you’re not up on your radio theory, a frequency mixer takes in two signals at different frequencies and produces an output signal that has various sums and differences of the two input signals in it. It’s this 147 MHz – 146 MHz = 1 MHz FM signal, right in the middle of the AM radio band’s frequency range, that’s passed on to the AM radio.

Next, the AM radio slope detects the frequency-modulated (FM) signal as if it were amplitude modulated (AM). This works as follows: FM radio encodes audio as changes in frequency, while AM radios encode the audio signal in the amplitude, or volume, of the radio signal. Instead of tracking the changing frequency as an FM radio would, slope detectors stick on a single frequency that’s tuned just slightly off from the FM carrier frequency. As the FM signal gets closer to or farther away from this fixed frequency, the received signal gets louder or quieter, and FM is detected as AM.

At 5:23, [vk3ye] steps through the circuit diagram. As he mentions, these are old tricks from circa 50 years ago, but it’s very nice to see a junk-box hack working so well with so few parts and receiving (very) high frequency FM on an old AM car radio. A circuit like this could make a versatile front end for an SDR setup. It makes us want to warm up the soldering iron.

Continue reading “Dusty Junk-bin Downconverter Receives FM on an AM Radio”