Scissor Lift Table From the Wood Shop, for the Wood Shop

The value of a mobile adjustable height cart in the shop can’t be overestimated. From moving tools around to installing heavy fixtures on walls and ceiling, a scissor-lift platform is a great tool. Commercial versions get a bit expensive, though, so a shop-built scissor lift table made of wood might be a nice project for the budget-minded to tackle.

Wood might not be your first choice for a fixture such as this, but it’s what [Marius Hornberger] is set up to use, and with proper species selection and careful engineering, it can make for an amazingly sturdy table. [Marius] chose ash for his parts, a wood with a long history of performing well under difficult conditions. The table is not all wood, of course; metal bushings and pins are used in the scissor mechanism, and the lift drive is a stout Acme-thread screw and nut. We’re impressed by [Marius]’ joinery skill, and with how sturdy the table proved to be.

Not a lot of woodworking projects seem to show up in our tip line for some reason, which is a shame. We love to feature wood builds, and like our own [John Baichtal] recently pointed out, the health of the wood shop is often a leading indicator of the health of a hackerspace.

Continue reading “Scissor Lift Table From the Wood Shop, for the Wood Shop”

A Table From Beyond Infinity

Infinity mirrors are some far-out table mods and make a great centerpiece. Instructables user [bongoboy23] took a couple steps beyond infinity when designing this incredible table tailor-made for our modern age.

Poplar and pine wood make up the framing, and red oak — stained and engraved — make for a chic exterior. Programmed with Arduino and run on a Teensy 3.1, the tabletop has 960 LEDs in forty sections. There are, four USB ports hidden behind sliding panels, as well as a two-port AC outlet and an inductive charging pad and circuit.  A hidden Adafruit TFT touchscreen display allows the user to control the table’s functions. Control is limited to changing lighting functions, but Pac-Man, Snake, and text features are still to come!

Weighing in at $850, it’s not a cheap build, but it looks amazing.

Continue reading “A Table From Beyond Infinity”

A Smart Table For Gamers

When makers take to designing furniture for their own home, the results are spectacular. For their senior design project, [Phillip Murphy] and his teammates set about building a smart table from the ground up. Oh, and you can also use it to play games, demonstrated in the video below.

The table uses 512 WS2812 pixels in a 32 x 16 array which has enough resolution to play a selection of integrated games — Go, 2-player Tetris, and Tron light cycle combat — as well as some other features like a dancing bird party mode — because what’s the point of having a smart table if it can’t also double as rave lighting?

A C2000-family microcontroller on a custom board is the brains, and is controlled by an Android app via Bluetooth RN-42 modules. The table frame was designed in Sketchup, laser-cut, and painstakingly stained. [Murphy] and company used aluminum ducting tape in each of the ‘pixels’, and the table’s frame actually forms the pixel grid. Check out the overview and some of the games in action after the break.

Continue reading “A Smart Table For Gamers”

Touch Sensitive Cement with Just a Dash of Neon

For quite some time now we’ve seen people casting their own countertops and other surfaces out of cement. It’s a combination of mold-making and surface finishing that produces a smooth and durable surface at quite a low cost, if you don’t factor in damage done to your back when lifting the thing for installation.

This offering is a little bit different. [Elliott Spelman] built his own touch sensitive cement table top. When you place your grubby hands on the polished surface, a loop of neon lighting is switched on. This is thanks to a 4:1 mix of quick setting cement and iron oxide powder. Bare copper wire was laid around the edges of the surface to be encased by the cement for making connections later.

There were some sad moments when [Elliott] was removing the cast surface from the mold. He ended up cracking it and suggests others be liberal with their use of both wax on the mold before casting, and patience in removing the cement afterward. We might also suggest a strengthening agent like fiber reinforcement. The edges and surface can be sanded to the finish desired and in this case, attaching table legs was easy since the wooden underside of the mold remains on the bottom of the cement.

The neon lighting adds a retro touch to this build. It’s sad to see this technology dying away, so a resurgence of artisanal neon is great in our book. [Elliott] found a Bay Area arts collective called the Crucible which does a lot of art glass education to help him make two hoops of glass tube and fill them with the appropriate gasses. A capacitive touch sensor (once Atmel, now Microchip part) AT42QT2120 (datasheet) monitors the wire coming from the slab and switches the power supply for the tubes using a combination of relay board and Arduino Uno.

We find the prospect of positional sensing in doped cement fascinating. Anyone have ideas for adapting this technique so that a more long and narrow slab could have positional awareness within, say, a few inches? Let us know in the comments.

Continue reading “Touch Sensitive Cement with Just a Dash of Neon”

Stop Buying Expensive Circular Saw Blades, Use Paper Instead

[John Heisz] was contemplating the secrets of the universe when an errant thought led him to wonder, could I use a sheet of paper as the blade in my table saw?

He takes a sheet of regular printer paper, draws a circle on it the same diameter as his regular blades, and cuts it out. He then bolts it into place on the spindle, slots in the table saw insert for really really thin kerf blades, and fires it up.

The blade is surprisingly dangerous. One would maybe expect a paper blade to be minimally damaging to a finger at best, but it quickly shows itself to be capable of tearing through paper and cutting through wood at a reasonable clip. Since the paper is minimally conductive, a SawStop couldn’t save someone from a lack of caution.

The blade finally meets its match half way through a half-inch thick piece of wood scrap. Wood and paper dust explode outward as the experiment ends. Video after the break.

Continue reading “Stop Buying Expensive Circular Saw Blades, Use Paper Instead”

Concrete Table Just the Way You Like It

You need a coffee table, you need a dinner table. Do you really need two tables? [Shua] thinks the answer is “no”. That’s why he built this swinging countersink table out of concrete and a aluminum.

He started by making a simple half-scale prototype. Then a larger one. Through these explorations he learned how the table would be made, what kind of weight it needed, and how the mechanics needed to be constructed for the most stable table top.

Next he designed the final table in Autodesk Revit. This is software traditionally used for architecture. Since the table was to be made from concrete Revit’s useful set of concrete tools were useful for this project.

Most of the construction process was pretty standard. However, the use of CNC’d pink insulation as a mold for the concrete was interesting. The foam is closed cell, so it worked fine and gave a nice finish. The assembly was finished with a glass top and a carpeted base that contained a surge suppressor and two outlets. The table can be seen swinging between two positions in a video after the break.

Continue reading “Concrete Table Just the Way You Like It”

A Better Expanding Table

About a year ago, [Scott] completed what is probably one of the finest builds ever shown on a YouTube channel. It was an expanding wooden table, a build inspired by a fantastically expensive expanding table that was itself inspired by a creation by a mad woodworker in the early 1800s. Although [Scott]’s table is a very well-engineered build, there were a few things he wasn’t happy with. Over the past few months he’s been refining the design and has come up with the final iteration – and plans – for a wooden mechanical expanding table.

Late last year, [Scott] had about 450 hours of design and build time in his table, and by the time he got to the proof of concept stage, he simply ran out of steam. Another year brings renewed enthusiasm, and over the past month or so he’s been working on much-needed improvements to his expanding table that included a skirt for the side of the table, and improvements to the mechanics.

The expanding table is rather thick with three layers of tabletop stacked on top of each other, and those exposed mechanical linkages should be hidden. This means a skirt, and that requires a huge wooden ring. [Scott] built a ring 5 1/2″ deep, about an inch and a half thick, and has the same diameter of the table itself. This means cutting up a lot of plywood, and stacking, gluing, sanding, and routing the entire thing into a perfectly round shape.

The other upgrades were really about the fit and finish of the internal mechanics of the table. Screws were changed out, additional brackets were crafted, and the mounts for the internal ‘star’ was upgraded.

After all that work, is the table done? No, not quite; the skirt could use a veneer, proper legs need to be built, and the entire thing could use a finish. Still, this is the most complete homebuilt expanding table ever conceived, and [Scott] has the plans for his table available for anyone who would want to replicate his work.

Continue reading “A Better Expanding Table”