Making a Wearable NFC Bus Pass

[Stephen Cognetta] is trying to get the total number of things he owns down below 115, and he’s always looking for ways to streamline his life.

Toward this goal he dissolved his SF Transit Clipper Card in acetone to get at the NFC tag embedded inside. The tag consists of a tiny chip attached to an antenna the size of the card itself. It took about three days (video below the break) for the layers to separate and [Stephen] was able to extricate the tag.

He ended up trying a few different ways of storing the delicate chip and antenna, including a lump of Sugru as well as a waterproof aspirin band, pictured to the right.

One supposes the transit pass idea might save you a little time, but what would really simplify your life would be having a single wearable tag that unlocked a bunch of things. Also it should be noted that, un-coolly, damaging a card violates SF Transit’s terms of service…

HaD has covered NFC wearables before, including the phone-unlocking NFC ring as well as the NFC ring box. This NFC-controlled infinity mirror makes great use of the technology.

Continue reading “Making a Wearable NFC Bus Pass”

Go Big or Go Home: A Tablecloth Touchpad

Phone screens keep getting bigger. Computer screens keep getting bigger. Why not a large trackpad to use as a mouse? [MaddyMaxey] had that thought and with a few components and some sewing skills created a trackpad in a tablecloth.

The electronics in this project are right off the shelf. A Flora board for the brains and 4 capacitive touch boards. If you haven’t seen the Flora, it is a circular-shaped Arduino made for sewing into things. The real interesting part is the construction. If you haven’t worked with conductive fabric and thread, this will be a real eye-opener. [Maddy’s] blog has a lot of information about her explorations into merging fabric and electronics and also covers things like selecting conductive thread.

As an optional feature, [MaddyMaxey] added vibration motors that provide haptic feedback to her touchpad. We were hoping for a video, but there doesn’t seem to be one. The code is just the example program for the capacitive sensor boards, although you can see in a screenshot the additions for the haptic motors.

We’ve covered the Flora before, by the way. You could also make a ridiculously large touch surface using tomography, although the resolution isn’t quite good enough for mouse purposes.

“Norman, coordinate!”

If Star Trek taught us anything, it’s clearly that we’re not quite in the future yet. Case in point: androids are not supposed to be little flecks of printed circuits with wires and jacks sprouting off them. Androids are supposed to be gorgeous fembots in polyester kimonos with beehive hairdos, designed to do our bidding and controlled by flashing, beeping, serial number necklaces.

Not willing to wait till the 23rd century for this glorious day, [Peter Walsh] designed and built his own android amulet prop from the original series episode “I, Mudd.” There’s a clip below if you need a refresher on this particularly notable 1967 episode, but the gist is that the Enterprise crew is kidnapped by advanced yet simple-minded androids that can be defeated by liberal doses of illogic and overacting.

The androids’ amulets indicate when they BSOD by flashing and beeping. [Peter]’s amulet is a faithful reproduction done up in laser-cut acrylic with LEDs and a driver from a headphone. The leads for the amulet go to a small control box with a battery pack and the disappointing kind of Android, and a palmed microswitch allows you to indicate your current state of confusion.

You’ll be sure to be the hit of any con with this one, although how to make smoke come out of your head is left as an exercise for the reader. Or if you’d prefer a more sophisticated wearable from The Next Generation, check out this polished and professional communicator badge. Both the amulet and the communicator were entries in the Hackaday Sci-Fi contest.

Continue reading ““Norman, coordinate!””

Wearable Predicts Tone of Conversation from Speech, Vital Signs

If you’ve ever wondered how people are really feeling during a conversation, you’re not alone. By and large, we rely on a huge number of cues — body language, speech, eye contact, and a million others — to determine the feelings of others. It’s an inexact science to say the least. Now, researchers at MIT have developed a wearable system to analyze the tone of a conversation.

The system uses Samsung Simband wearables, which are capable of measuring several physiological markers — heart rate, blood pressure, blood flow, and skin temperature — as well as movement thanks to an on-board accelerometer. This data is fed into a neural network which was trained to classify a conversation as “happy” or “sad”. Training consisted of capturing 31 conversations of several minutes duration each, where participants were asked to tell a happy or sad story of their own choosing. This was done in an effort to record more organic emotional states than simply eliciting emotion through the use of more typical “happy” or “sad” video materials often used in similar studies.

The technology is in a very early stage of development, however the team hopes that down the road, the system will be sufficiently advanced to act as an emotional coach in real-life social situations. There is a certain strangeness about the idea of asking a computer to tell you how a person is feeling, but if humans are nothing more than a bag of wet chemicals, there might be merit in the idea yet. It’s a pretty big if.

Machine learning is becoming more powerful on a daily basis, particularly as we have ever greater amounts of computing power to throw behind it. Check out our primer on machine learning to get up to speed.

Continue reading “Wearable Predicts Tone of Conversation from Speech, Vital Signs”

Bluetooth Automation Remote Hangs Around

Using your smartphone to control your home automation system gives you a lot of flexibility. But for something as simple as turning the lights on and off, it can be a pain to go through the whole process of unlocking your phone, choosing the right browser page or app, and then finally hitting the button you need. It’d be much simpler if it could all be done at the touch of a single, physical button – but phones don’t have many of those anymore. [falldeaf] brings the solution – a four-button Bluetooth remote for your smartphone that’s wearable, to boot.

The project is built around the RFDuino, an Arduino platform used for quickly and easily building Bluetooth compatible projects. So far, so simple – four buttons wired into a microcontroller with wireless capability onboard. The real trick is the 3D-printed clothespin style case which allows you to clip the four-button remote onto your clothes. [falldeaf]’s first attempt was a palm-mounted setup that they found got in the way of regular tasks; we agree that the wearable version offers a serious upgrade in utility.

The smartphone side of things is handled with a custom app [falldeaf] coded using PhoneGap. This is where actions for the buttons can be customized, including using the buttons to navigate a menu system to enable the user to select more than just one function per button. It adds a high level of flexibility, so you can create all kinds of macros to control your whole home automation system from your button clip.

It’s really great to see a project that considers ergonomics and usability above and beyond just creating the baseline functionality. Follow this train of thought and you’ll find yourself enjoying your projects in the use phase well beyond the initial build. Another great example is this self-charging electrically heated jacket. Video after the break.

Continue reading “Bluetooth Automation Remote Hangs Around”

Stormtrooper Voice Changer Helmet uses Teensy to Mangle Audio

Halloween has come and gone, but this DIY voice changing Star Wars Stormtrooper helmet tutorial by [Shawn Hymel] is worth a look for a number of reasons. Not only is the whole thing completely self-contained, but the voice changing is done in software thanks to the Teensy’s powerful audio filtering abilities. In addition, the Teensy also takes care of adding the iconic Stormtrooper clicks, pops, and static bursts around the voice-altered speech. Check out the video below to hear it in action.

Besides a microphone and speakers, there’s a Teensy 3.2, a low-cost add-on board for the Teensy that includes a small audio amp, a power supply… and that’s about it. There isn’t a separate WAV board or hacked MP3 player in sight.

Continue reading “Stormtrooper Voice Changer Helmet uses Teensy to Mangle Audio”

Hackaday Prize Entry: Raspberry Pi Zero Smart Glass

Some of the more interesting consumer hardware devices of recent years have been smart glasses. Devices like Google Glass or Snapchat Spectacles, eyewear incorporating a display and computing power to deliver information or provide augmented reality on an unobtrusive wearable platform.

Raspberry Pi Zero Smart Glass aims to provide an entry into this world, with image recognition and OCR text recognition in a pair of glasses courtesy of a Raspberry Pi Zero. Unusually though it does not take the display option of other devices of having a mirror or prism in the user’s field of view, instead it replaces the user’s entire field of view with a display and re-connects them to the world through the Raspberry Pi camera.

The display in question is an inexpensive set of “3D Virtual Stereo Digital Video glasses”, of the type that can be found fairly easily on your favourite auction site. They aren’t particularly high-resolution, but the Pi can easily drive them with its composite video output. The electronics and camera are mounted on a headband, in a custom 3D-printed enclosure. All files can be downloaded from the project page.

There is some Python software, but it’s fair to say that there is not a clear demo on the project page showing it working. However this is no reason to disregard this project, because even if its software has yet to achieve its full potential there is value elsewhere. The 3D-printed Raspberry Pi enclosure should be of use to many other similar wearable projects, and we’d almost say it’s worthy of a project all of its own.