That E-Cig Battery Probably Fits Into Sunglasses

This particular e-cigarette is a little bigger than a typical cigarette, with a matching battery.

E-cigarettes use electrical power to rapidly heat and vaporize a base liquid such as propylene glycol, and that power comes from a battery. These devices are functionally straightforward but it can be a messy process on the inside. Thankfully though the batteries can be salvaged once components like heating elements either gum up or burn out.

[facelesstech] decided to use the battery from an e-cig as the power source for a smart sunglasses project, which uses two RGB LED rings to put on a light show. Opening up the device it was discovered that the battery was a straightforward lithium-polymer cell, in AAAA size. If you’ve ever torn open a 9 v battery and discovered the six diminutive cylinders inside, an AAAA cell is about the same size as one of those. However, the battery from the e-cig is both rechargeable and has a nominal voltage of 3.7 volts, which can happily drive a microcontroller project. The small battery fit nicely into one arm of the glasses, and when covered with heat-shrink, was hardly noticeable. The battery charger doesn’t fit inside the glasses, but one can’t have everything.

The ability of an e-cigarette to pump out clouds of vapor has led to some interesting hacks. One such is a DIY portable fog machine, which opens all kinds of doors for costuming applications.

Glasses Frames Crafted Out Of Wood

Most glasses and sunglasses on the market make use of metal or plastic frames. It’s relatively easy to create all manner of interesting frame geometries, tolerances can be easily controlled for fitting optical elements, and they’re robust materials that can withstand daily use. Wood falls short on all of these measures, but that doesn’t mean you can’t use it to make a beautiful pair of glasses.

ZYLO is a company making wooden eyewear, and this video from [Paide] shows the build process in detail. Modern tools are used to make things as efficient as possible. Parts are lasercut and engraved to form the main part of the frames as well as the temples (the arms that sit over the ears to hold them on your face). A special jig is used to impart a curve on the laminated wood parts before further assembly is undertaken. Metal pre-fabricated hinges and screws are used to bolt everything together like most other modern sunglasses, but there’s significant hand finishing involved, including delicate inlays and highlighting logo features.

In contrast, Manuel Arroyave works very differently in the creation of his Cedoro glasses. Sheets are first laminated together, before the shape is roughed out by a special horizontal axis milling setup. Even small details like the hinges are delicately hand-crafted out of wood and fitted with tiny wooden dowels.

It goes to show that there’s always more than one way to get a job done. We’re tempted to break out the laser cutter and get started on some custom shades ourselves. Perhaps though, you’re too tired to put your sunglasses on by yourself? Nevermind, there’s a solution for that, too. Video after the break.

Continue reading “Glasses Frames Crafted Out Of Wood”

Bose Wants You To Listen Up For Augmented Reality

Perhaps it is true that if all you have is a hammer every problem you see looks like a nail. When you think of augmented reality (AR), you usually think of something like the poorly-received Google Glass where your phone or computer overlays imagery in your field of vision. Bose isn’t known for video, though, they are known for audio. So perhaps it isn’t surprising that their upcoming (January 2019) AR sunglasses won’t feature video overlays. Instead, the $200 sunglasses will tell you what you are looking at.

The thing hinges on your device knowing your approximate location and the glasses knowing their orientation due to an inertial measuring system. In other words, the glasses — combined with your smart device — know where you are and what you are looking at. Approximately. So at the museum, if you are looking at a piece of art, the glasses could tell you more information about it. There’s a video showing an early prototype from earlier this year, below.

Continue reading “Bose Wants You To Listen Up For Augmented Reality”

Challenge Your Perception Of Reality With Emotional Sunglasses

The Peril-Sensitive sunglasses of Hitchhiker’s Guide fame directly affect the user’s response to a stimulus, turning completely opaque in response to danger. That’s a great idea, but what if sunglasses could affect your emotions? That’s what the EmotiGlass project in this year’s Hackaday Prize is doing. It’s a concept that allows a computer to change the user’s emotional perception of reality.

The key idea behind the EmotiGlass comes from a paper published by a researcher at the University of London just this year. Apparently, your emotional reaction to an image can be controlled depending on the point in time during your heartbeat cycle the image is presented. For example, researchers found the perception of pain depended on the point in the cardiac cycle the stimulus was delivered.

In an effort to test out this hypothesis with some Open Source hardware, [David Prutchi] and [Jason Meyers] created a pair of sunglasses with liquid crystal lenses that can either be clear or opaque. With the addition of ECG sensors to detect the cardiac cycle and a microcontroller to tie everything together, you get a device that is the emotional equivalent of Peril-Sensitive sunglass.

This is a great project that won $1000 for making it to the finals of the Hackaday Prize, and we’re proud to have this project in the running for the Grand Prize of $50,000 USD.

Automatic Sunglasses, The Electromechanical Way

These days, photochromic lenses are old-hat. Sure, it’s useful to have a pair of glasses that automatically tints due to UV light, but what if you want something a little more complex and flashy? Enter [Ashraf Minhaj]’s SunGlass-Bot.

The build is simple, beginning with an Arduino Pro Mini for reasons of size. Connected to the analog input is a light-dependent resistor for sensing the ambient light level. This reading is then used to decide whether or not to move the servo which controls the position of the lenses. In low light, the lenses are flipped up to allow clear vision; in brighter light, the lenses flip down to protect the eyes. Power is supplied by a homebrew powerbank that it appears [Ashraf] built from an old phone battery and a small boost converter board. All the files to recreate the project are available on Github, too.

It’s a fun build that [Ashraf] shows off in style. While this may not be as effortless as a set of Transition lenses or as quick as a welding mask filter, it has a certain mechanical charm that wouldn’t be out-of-place in a certain sci-fi aesthetic.

Hungry for more? Check out these self-blending sunglasses we featured a while back. Video after the break.

Continue reading “Automatic Sunglasses, The Electromechanical Way”

Automatic Sunglasses, No Battery!

There are some projects that are so simple they require very little description, and [Bobricius’s] automatic sunglasses definitely fit into that category. Their story starts with the fad for 3D displays a few years ago, a resurfacing of the movie business’s periodic flirtation with the third dimension in the hope of using the gimmick to bring in more moviegoers. There was a time when you could hardly encounter a new TV or graphics card without it coming with a pair of cheap plastic glasses with LCD panels instead of lenses that would alternately shutter the view for each eye to create the 3D illusion.

Of course, once everyone had seen the film with the blue aliens and tried a few other titles on their new toy, they grew tired of headaches, nausea, and half-brightness. The glasses gathered dust, and the fancy 3D telly never ventured beyond two dimensions again. Except for [Bobricius’s] glasses, that is, for he’s levered out the 3D driver electronics and replaced them with a tiny SOIC-8 solar cell. Light hits the cell, the LCD gets a charge and darkens, no light and they remain transparent. Similar to welding goggles — though they usually use a battery. It’s unclear whether they can get a little too dark on a really bright day and whether they are something akin to [Zaphod Beeblebrox]’s peril-sensitive sunglasses, but we really applaud the idea. They are so simple that this Hackaday write-up is probably longer than their write-up, but they remain a neatly executed idea and we like that.

You can, of course, use a battery, or achieve the same effect by more complex means. But if the [Beeblebrox] glasses are closer to your requirements, we’ve got that covered too.

Automatic Sunglasses For The Lazy Hacker

[Andreas] may have created the ultimate lazy hacker accessory: automatic sunglasses, or “Selfblending sunglasses” as he creatively titled his video. If you can’t tell from the name, these are glasses that you never have to take off. If the light is dim, they move away from your eyes. Going back outside to bright light? The glasses move to protect your eyes.

The glasses consist of a couple of micro servos which move tinted lenses toward or away from the user’s eyes. A side-mounted Arduino Uno reads a CdS cell light sensor and drives the servos.  Why an Uno rather than a much more wearable Arduino Nano? It’s what [Andreas] had lying around.

Yes, a good portion of the fun of this build is [Andreas’] comedy. But the best part comes when he tests the glasses out — in an actual car on the highway. The glasses work better than expected — moving the lenses into and out of [Andreas] field of view as he drives through tunnels. You can actually see how surprised [Andreas] is that it works so well.

These aren’t the first automatic sunglasses we’ve seen, nor are they the most peril-sensitive. Still, it’s a fun project and the video gave us a few chuckles.

Continue reading “Automatic Sunglasses For The Lazy Hacker”