Showing Off The Badge Hacks From SuperCon

Since the Beginning of Time* humans have been irresistibly attracted to the blinking of an LED. At first there was one LED and it was good, but eventually there were many working in unison and the matrix was formed. Badge hacking at the Hackaday SuperConference challenged everyone to do something interesting with the display matrix and other yummy hardware on this year’s badge and we were in awe of what people managed to pull off.

We named three winners, and recognized the first hacker to solve the Crypto Challenge. Check out the presentations in the video below and then join us after the break for a close look at each winning hack. Three winners received $256 and the crypto challenge winner received $512; two of them told Hackaday they plan to donate their prize to charity.

*we of course mark the beginning of time as the Unix Epoch

Continue reading “Showing Off The Badge Hacks From SuperCon”

Heathkit: Getting Closer This Time?

We’ve been following the Heathkit reboot for a while now, and it looks like the storied brand is finally getting a little closer to its glory days. I was thumbing through the new issue of QST magazine while I was listening in on a teleconference for the day job – hey, a guy can multitask, can’t he? – when I spied an ad for the Heathkit GC-1006 digital clock, which they brand the “Most Reliable Clock”. As soon as the meeting was over, I headed over to the Heathkit website to check out this latest offering.

I had cautiously high hopes. After the ridiculous, feature-poor, no-solder AM radio kit (although they sensibly followed up with a solder version of that kit) and an overpriced 2-meter ham antenna, I figured there was nowhere for Heathkit to go but up. And the fact that the new kit was a clock was encouraging. I have fond memories of Heathkit clocks from the 80s when I worked in a public service dispatch center; Heathkit clocks were about the only clocks you could get that would display 24-hour time. Could this actually be a kit worth building?

Alas, the advertisement was another one of those wall-of-text things that the new Heathkit seems so enamored of. And like the previous two kits offered, the ad copy is full of superlatives and cutesy little phrases that really turn me off. Then again, most advertising turns me off, so I’m probably not a good gauge of such things. Nor am I sure I’m in the target demographic for this product – in fact, I’m not even sure to whom this product is being marketed. Is it the younger crowd of the maker movement? Or is it the old-timers who want to relive the glory days of Heathkit builds? Given the $100 price, I’d have to say the nostalgia market is the most likely buyer of this one.

To be fair, $100 might not be that much to spend on a decent clock. I’m a bit of a clock snob, and I’ve gotten to the point where I can almost tell which chip is in a clock just by looking at the controls. The feature set of a modern digital clock has converged to a point where every clock has almost exactly the same deficiencies. The GC-1006 claims to address a few of my hot button issues, like not being able to set the time to the exact second – I hate that! An auto-dimming display is nice, as is a 12- or 24-hour display, a 10-minute timer (nice for hams, who are required to ID their station every 10 minutes), and a battery backup that claims to last for 4 weeks.

Is this worth buying? At this point, I’m on the fence. Looking at an unboxing video, it appears to be a high-quality kit, and it would be fun to build. But spending $100 on a clock might be a tough sell to my loan officer.

Still, I think I might take one for the team here so we have a first-hand report of what the new Heathkit is all about. And it would be nice to build another Heathkit product. I’ll let you know how it goes.

Continue reading “Heathkit: Getting Closer This Time?”

Step Up To The 1 KB Challenge

1 kilobyte. Today it sounds like an infinitesimally small number. Computers come with tens of gigabytes of ram, and multiple terabytes of storage space. You can buy a Linux computer with 1 gig of RAM and secondary storage as big as the SD card you throw at it. Even microcontrollers have stepped up their game, with megabytes of flash often available for program storage.

Rapidly growing memory and storage are a great testament to technology marching forward to the beat of Moore’s law. But, we should be careful not to forget the techniques of past hackers who didn’t have so much breathing room. Those were the days when code was written in assembly. Debugging was accomplished with an expensive ICE (an In Circuit Emulator… if you were working for a big company), or a few LEDs if you were hacking away in your basement.

To keep these skills and techniques in play, we’ve created The 1 kB Challenge, a contest where the only limit is what you can do with 1 kB of program memory. Many Hackaday contests are rather loose with constraints — anyone can enter and at least make the judging rounds. This time 1 kB is a hard limit. If your program doesn’t fit, you’re disqualified, and that is a challenge worth stepping up to.

That said, this is Hackaday, we want people to be creative and work around the rules. The important thing to remember is the spirit of the design constraints: this is about doing all you can with 1 kB of program space. Search out the old and wise tricks, like compressing your code and including a decompression program in your 1 kB. Crafty hacks to squeeze more into less is fine. Using the 1 kB as a bootloader to load more code from an SD card is not fine.

Prizes

Any Hackaday contest needs some awesome prizes, and this one is no different.

Continue reading “Step Up To The 1 KB Challenge”

DIY Talkie Toaster from Red Dwarf

Red Dwarf’s Talkie Toaster Tests Tolerance

In the Red Dwarf TV series, Talkie Toaster wants to know if you want toast, and if not toast, then maybe a muffin or waffle, and it will pester you incessantly until you smash it with a 14lb lump hammer and throw it in a waste disposal. Now [slider2732] has actually gone and made one of the infernal machines!

He’s hidden a PIR sensor in the toaster handle to tell an Arduino Pro Mini when someone is unfortunate enough to be passing by. The Arduino then reads sound files from an SD card reader and plays them through a 3 watt amplifier out to a speaker. For that he uses the TMRpcm library available on github.

[slider2732] cleverly mounted the speaker to the side of the toaster along with some appropriately shaped bits and pieces, and some LEDs to make it appear and work much like the circular panel that lights up on the real Talkie Toaster. We dare you to watch the video after the break, unless you really are looking for toast. As a consolation, the video also walks through making it.

Continue reading “Red Dwarf’s Talkie Toaster Tests Tolerance”

A Rebel Alliance For Internet Of Things Standards

Back when the original Internet, the digital one, was being brought together there was a vicious standards war. The fallout from the war fundamentally underpins how we use the Internet today, and what’s surprising is that things didn’t work out how everyone expected. The rebel alliance won, and when it comes to standards, it turns out that’s a lot more common than you might think.

Looking back the history of the Internet could have been very different. In the mid eighties the OSI standards were the obvious choice. In 1988 the Department of Commerce issued a mandate that all computers purchased by government agencies should be OSI compatible starting from the middle of 1990, and yet two years later the battle was already over, and the OSI standards had already lost.

In fact by the early nineties the dominance of TCP/IP was almost complete. In January of 1991 the British academic backbone network, called JANET (which was based around X.25 colored book protocols), established a pilot project to host IP traffic on the network. Within ten months the IP traffic had exceeded the levels of X.25 traffic, and IP support became official in November.

“Twenty five years ago a much smaller crowd was fighting about open versus proprietary, and Internet versus OSI. In the end, ‘rough consensus and running code’ decided the matter: open won and Internet won,”

Marshall Rose, chair of several IETF Working Groups during the period

This of course wasn’t the first standards battle, history is littered with innumerable standards that have won or lost. It also wasn’t the last the Internet was to see. By the mid noughties SOAP and XML were seen as the obvious way to build out the distributed services we all, at that point, already saw coming. Yet by the end of the decade SOAP and XML were in heavy retreat. RESTful services and JSON, far more lightweight and developer friendly than their heavyweight counterparts, had won.

“JSON appeared at a time when developers felt drowned by misguided overcomplicated XML-based web services, and JSON let them just get the job done,”

“Because it came from JavaScript, and pretty much anybody could do it, JSON was free of XML’s fondness for design by committee. It also looked more familiar to programmers.”

Simon St. Laurent, content manager at LinkedIn and O’Reilly author

Yet, depending on which standards body you want to listen to, ECMA or the IETF, JSON only became a standard in 2013, or 2014, respectively and while the IETF RFC talks about semantics and security, the ECMA standard covers only the syntax. Despite that it’s unlikely many people have actually read the standards, and this includes the developers using the standard and even those implementing the libraries those developers depend on.

We have reached the point where standardization bodies no longer create standards, they formalize them, and the way we build the Internet of Things is going to be fundamentally influenced by that new reality.

Continue reading “A Rebel Alliance For Internet Of Things Standards”

The Raspberry Pi 2 Gets A Processor Upgrade

A rumor that has been swirling around the Raspberry Pi hardware community for a significant time has proven to have a basis in fact. The Raspberry Pi 2 has lost its BCM2836 32-bit processor, and gained the 64-bit BCM2837 processor from its newer sibling, the Raspberry Pi 3. It seems this switch was made weeks ago without any fanfare on the release of the Pi 2 V1.2 board revision, so we are among many news sources that were caught on the hop.

The new board is not quite a Pi 3 masquerading as a Pi 2 though. The more capable processor is clocked at a sedate 900MHz as opposed to the Pi 3’s 1.2GHz and there is no Bluetooth or WiFi on board, but the new revision will of course benefit from the extra onboard cache and the 64-bit cores.

This move almost certainly has its roots in saving the cost of BCM2836 production in the face of falling Pi 2 sales after the launch of the Pi 3. It makes sense for the Foundation to keep the Pi 2 in their range though as the board has found a home in many embedded products for which the Pi 3’s wireless capabilities and extra power consumption are not an asset.

Avid collectors of Pi boards will no doubt be running to add this one to their displays, but given that the Pi 2 sells for the same price as a Pi 3 we suspect that most Hackaday readers will go for the faster board. It is still a development worth knowing about though, should you require a faster Pi that is a little less power-hungry. The full specification for the revised board can be found on the Raspberry Pi web site.

The Pi has come a long way since the morning in 2012 when our community brought down the RS and Farnell websites trying to buy one of the first models. This BCM2837 board joins a BCM2837-powered Compute Module as well as the Pi 3. It’s worth reminding you though that there are other players to consider, earlier this year we brought you a look at the Odroid C2, and of course the infamous Apple Device.

Pi 2 header image: Multicherry [CC BY-SA 4.0], via Wikimedia Commons.

Editorial Note: We originally covered this in Sunday’s Links article but thought it warranted another, expanded mention.

Drone Vs. Airplane? Who Will Win? Science Knows.

Ignore the article, watch the video at the top of the page. The article is about some idiot, likely not even a hacker, who bought a drone somewhere and nearly rammed it into a plane. He managed this with concentrated idiocy, intention was not involved. While these idiots are working hard to get our cool toys taken away, researchers elsewhere are answering the question of exactly how much threat a drone poses to an airplane.

droneexplode_thumbAirplanes are apparently armored to withstand a strike from an 8lb bird. However, even if in a similar weight class, a drone is not constructed of the same stuff. To understand if this mattered, step one was to exactly model a DJI Phantom and then digitally launch it at various sections of a very expensive airplane.

The next step, apparently, was to put a drone into an air cannon and launch it at an aluminum sheet. The drone explodes quite dramatically. Some people have the best jobs.

The study is still ongoing, but from the little clips seen; the drone loses. Along with the rest of us.

Perhaps the larger problem to think about right now is how to establish if a “drone” has actually been involved in an incident with a passenger aircraft. It seems there are a lot of instances where that claim is dubious.