Countdown To Pi 1 Loss Of Support, Activated

The older Raspberry Pi boards have had a long life, serving faithfully since 2012. Frankly, their continued support is a rarity these days — it’s truly incredible that an up-to-date OS image can still be downloaded for them in 2025. All good things must eventually come to an end though, and perhaps one of the first signs of that moment for the BCM2385 could be evident in Phoronix’s report on Debian dropping support for MIPS64EL & ARMEL architectures. Both are now long in the tooth and other than ARMEL in the Pi, rarely encountered now, so were it not for the little board from Cambridge this might hardly be news. But what does it mean for the older Pi?

It’s first important to remind readers that there’s no need to panic just yet, as the support is going not for the mainstream Debian releases, but the unstable and experimental ones. The mainstream Debian support period for the current releases presumably including the Debian-based Raspberry Pi OS extends until 2030, which tallies well with Raspberry Pi’s own end-of-life date for their earlier boards. But it’s a salutary reminder that that the clock’s ticking, should (like some of us) you be running an older Pi.  You’ve got about five years.

Alec using the arc spraying device

Make Metal Rain With Thermal Spraying

For those of us hackers who have gone down a machining rabbit hole, we all know how annoying it can be to over-machine a part. Thermal spraying, while sounding sci-fi, is a method where you can just spray that metal back on your workpiece. If you don’t care about machining, how about a gun that shoots a shower of sparks just to coat your enemies in a layer of metal? Welcome to the world of thermal spraying, led by the one and only [Alec Steele].

There are three main techniques shown that can be used to coat using metal spools. The first, termed flame spraying, uses a propane flame and compressed air to blast fine drops of molten metal onto your surface. A fuel-heavy mixture allows the metal to remain unoxidized and protect any surface beneath. Perhaps one of the most fun to use is the arc method of thermal spray. Two wires feed together to short a high current circuit; all it takes from there is a little pressured air to create a shower of molten metal. This leaves the last method similar to the first, but uses a powder material rather than the wires used in flame spraying.

As with much crazy tech, the main uses of thermal spraying are somewhat mundane. Coating is applied to prevent oxidation, add material to be re-machined, or improve the mechanical resistance of a part. As expensive as this tech is, we would love to see someone attempt an open-source version to allow all of us at Hackaday to play with. Can’t call it too crazy when we have people making their own X-ray machines.

Continue reading “Make Metal Rain With Thermal Spraying”