Saying Goodbye To Don Lancaster

The electronics world has lost a guru. On June 7th this year, Don Lancaster passed away. [Brad] from Tech Time Traveller paid tribute to Don in a recent video. Don Lancaster was perhaps best known as the designer of the TV Typewriter.  The Typewriter drew characters on a TV screen when the user typed on a keyboard. It was the fundamental part of a simple terminal. This was quite an accomplishment in 1973 when the article was first published.

Don embodied the hacker spirit by figuring out low-cost (cheap) ways to overcome obstacles. His genius was his ability to communicate his methods in a way even non-technical people could understand. Keyboards are a great example. Back in the 1970’s a simple keyboard cost hundreds of dollars. Don figured out how to build one from scratch and published an article explaining how to do it.

Like many people we cover here on Hackaday, Don was quite a character. His website layout hasn’t changed much since the 1990’s, but the content has grown. To say he was a prolific writer would be an understatement. PostScript, Magic Sinewaves, and patents are just a few of his favorite topics. Don’s recent work involved the research of prehistoric canals in the American Southwest.

Everyone here at Hackaday sends our deepest condolences to Don’s family.

Continue reading “Saying Goodbye To Don Lancaster”

Take A Ride In The Bathysphere

[Tom Scott] has traveled the world to see interesting things.  So when he’s impressed by a DIY project, we sit up and listen. In this case, he’s visiting the Bathysphere, a project created by a couple of passionate hobbyists in Italy. The project is housed at Explorandia, which based on google translate, sounds like a pretty epic hackerspace.

The Bathysphere project itself is a simulation of a submarine. Sounds simple, but this project is anything but.  There are no VR goggles involved.  Budding captains who are up for the challenge find themselves inside the cockpit of a mini-submarine. The sub itself is on a DIY motion platform. Strong electric motors move the system causing riders to feel like they are truly underwater. Inside the cockpit, the detail is amazing. All sorts of switches, lights, and greebles make for a realistic experience.  An electronic voice provides the ship status, and let’s the crew know of any emergencies. (Spoiler alert — there will be emergencies!)

The real gem is how this simulation operates. A Logitec webcam is mounted on an XY gantry. This camera then is dipped underwater in a small pond. Video from the camera is sent to a large monitor which serves as the sub’s window. It’s all very 1960’s simulator tech, but the effect works. The subtle movements of the simulator platform really make the users feel like they are 20,000 leagues under the sea.

Check out the video after the break for more info!

Continue reading “Take A Ride In The Bathysphere”

NABU PC – A 1984 Z-80 Computer You Can Buy Today

Want to hack on brand new 8-bit 1980s hardware? Until recently you needed a time machine, or deep pockets to do this. All that has recently changed with the NABU PC. A retro machine that can be bought brand new for $59.99, (plus shipping) no time machine needed.

[Adrian] has one in his Digital Basement, and breaks it all down for us. The NABU PC was a Canadian computer.  Designed to connect to the cable TV network, the standard system had no internal secondary storage. You read that right; the NABU used the cable network to download and play games, view documents — just about anything you’d want to do with a computer. Cable modems back in the 80s — maybe someone did have a time machine?

Unfortunately, the NABU network failed. Not due to the PC’s hardware, but because the cable system back then was not designed for bidirectional data. While the NABU PC did see a limited release in Canada, was never widely successful. When production was shut down, the machines couldn’t be liquidated, as they didn’t do anything without the network. So in the warehouse, they sat, until this month, where can find them being sold on eBay.

So what’s inside a NABU? It starts with a Z-80 CPU sporting 64 kB of RAM. A TMS9918 handles video, while a General Instrument AY-3-8910 does the sound.  There are also two UARTs. An 8251 for serial io to the keyboard and joysticks, and a high-performance UART chip to handle comms with the network adapter. The keyboard is loaded with good old ALPS switches, and [Adrian] found it rather impressive.

That’s all well and good, but what can you actually do with a NABU PC? Right now, not much. The ROM software comes up and looks for the network adapter, then complains when it doesn’t find it. This means it’s hacking time! An army of retrocomputing enthusiasts are already working on bringing back the NABU computer. Check [Adrian]’s video description for all the documentation links, and check here on Hackaday for the latest updates!

This isn’t our first time watching this sort of liquidation — remember the HP touchpad?

Continue reading “NABU PC – A 1984 Z-80 Computer You Can Buy Today”

Digital Hourglass Counts Down The Seconds

If someone asked you to build a digital hourglass, what would your design look like? [BitBlt_Korry] took on that challenge, creating a functional art piece that hits it right on the nose: an hourglass with a digital display

Iron filings fall between two pieces of plexiglass while ghostly numbers appear, counting down 30 seconds. Just as quickly as they appear, the numbers disappear – dropping down to the bottom of the enclosure. Each second is punctuated by what might be the loudest clock tick we’ve ever heard.

Of course, it’s not all magic. The hourglass is controlled by a Raspberry Pi Pico running code in MicroPython. The pico drives a series of transistors, which in turn are used to control 14 solenoids.  The solenoids serve double duty — first, they move pieces of flat “fridge magnet” material close enough to attract iron filings. Their second duty is of course provide a clock tick that will definitely get your attention.

Tilt sensors are the user input to the hourglass, letting the Pi Pico know which end is up when it’s time to start a new 30-second countdown.

[BitBlt_Korry] mentions that the hardest part of the project was setting the screws at the top and bottom of the hourglass to get the perfect uniform flow of iron filings. 

[BitBlt_Korry] calls his creation “「時場(じば)」”.  Google translates this to “Jiba”, which means “magnetic field”.  We’re not native speakers, but we’re guessing there is a double meaning there.

This isn’t the first time we’ve seen humble iron filings stand up and dance at our command. If iron dust is too dry a topic, we’ve got plenty of ferrofluid projects as well!

Continue reading “Digital Hourglass Counts Down The Seconds”

Knight Rider Keeps On Truckin’

[AJ] and [Joe], collectively the [Knight Rider Historians] are bringing back one of the most iconic vehicles of the 1980’s. Everyone remembers KITT driving into the F.L.A.G. truck. Even the Mythbusters re-enacted the stunt back in 2007. The duo managed to track down the original tractor and trailer from the show for restoration, and part of that process means uncovering the Hollywood hacks used to make the car-driving-into-trailer stunt work.

Back in the ’80s when a movie or TV show wrapped up, the props were often re-used in other productions or sold off. The 1975 Dorsey trailer used on Knight Rider was eventually purchased, stripped down, and painted white. It spent the last 30 years serving as a racing trailer. Carrying cars, and tools, and serving as a mobile shop at the track.

Unsurprisingly, most of the custom parts from Knight Rider are gone – but some hints remain. Specifically, [KRH] are trying to figure out how the drive-up door operated. Originally they assumed it was a hydraulic ram system that pulled the cables. However, above a dropped ceiling they found a welded hard mount and a 24-foot rail running down the trailer roof.

They believe the hard mount was for a winch, and the rail was used as a cable guide for two winch cables.  A set of pulleys just behind the door directed these cables down to the ramp itself.

Continue reading “Knight Rider Keeps On Truckin’”

This Snake Has Legs

[Allen Pan] loves snakes. He loves them so much that he’s decided to play god, throwing away millions of years of evolution — just to give snakes back the legs they’ve “lost”.

Ok, so this hack has tongue planted firmly in cheek, but it’s still pretty darn cool. [Allen] designed and 3D printed what can best be described as a robot for snakes to ride.

The build wasn’t easy. Allen’s first attempts using toys based on [Jamie Mantzel]’s giant robot didn’t go exactly to plan. Thankfully those were only tested with a plush snake test dummy.  Thankfully [Allen’s] second was on target.

The robot itself consists of 4 legs, each with 3 joints and two servos. The foot joint pivots freely to handle any uneven terrain. The robot’s gait is derived from lizards Allen observed in a pet shop. The main body of the robot is a clear plastic tube. Once Shinji the snake decides to get in the robot, it isn’t strapped in. In fact, the snake is free to leave whenever it wants.

Currently, the whole system just walks forward. [Allen] appears to be using a servo controller with a hard-coded walking sequence. We’d love to see the next step – figuring out a way for the snake to control the robot’s direction.  Perhaps with a camera with gaze detection?

We’ve covered robots driven by animals before, and we’ve covered some of [Allen]’s builds — like this electromagnetic rendition on Mjölnir.
Continue reading “This Snake Has Legs”

The Secrets Of The Pop Pop Boat

Many kids get an early introduction to mechanics with tin pop-pop boats. If you haven’t played with one – you’re missing out! Pop Pop boats are fun toys – but how they work is often misunderstood. To clear this up, [Steve Mould] takes a deep dive into the theory of operation of the pop pop boat.

Most people think these toys operate like a simple steam engine, with water being flashed into steam inside a tiny tin boiler. Turns out that’s not the case. To explain the physics, [Steve] commissioned a glass version of the boat.

The glass boat shows that during normal operation, there isn’t any water at all in the “boiler” at all. The water is only in the boat’s small exhaust tubes. The air inside the tank is heated by a candle. The air expands and pushes the water out of the tubes. This allows the air to cool, and return to the tank. The water then rushes back up the tubes, and the process repeats.

One of the more interesting facts of the video is that the glass boat doesn’t pop. The popping sound associated with the boat is actually made by the tin diaphragm on top of the “boiler”.

[Steve] has gotten pretty good at explaining complex topics using clear cutaway models. If this tickles your fancy, check out his water computer.

Continue reading “The Secrets Of The Pop Pop Boat”