A Bird Watching Assistant

When AI is being touted as the latest tool to replace writers, filmmakers, and other creative talent it can be a bit depressing staring down the barrel of a future dystopia — especially since most LLMs just parrot their training data and aren’t actually creative. But AI can have some legitimate strengths when it’s taken under wing as an assistant rather than an outright replacement.

For example [Aarav] is happy as a lark when birdwatching, but the birds aren’t always around and it can sometimes be a bit of a wild goose chase waiting hours for them to show up. To help him with that he built this machine learning tool to help alert him to the presence of birds.

The small device is based on a Raspberry Pi 5 with an AI hat nested on top, and uses a wide-angle camera to keep an eagle-eyed lookout of a space like a garden or forest. It runs a few scripts in Python leveraging the OpenCV library, which is a widely available machine learning tool that allows users to easily interact with image recognition. When perched to view an outdoor area, it sends out an email notification to the user’s phone when it detects bird activity so that they can join the action swiftly if they happen to be doing other things at the time. The system also logs hourly bird-counts and creates a daily graph, helping users identify peak bird-watching times.

Right now the system can only detect the presence of birds in general, but he hopes to build future versions that can identify birds with more specificity, perhaps down to the species. Identifying birds by vision is certainly one viable way of going about this process, but one of our other favorite bird-watching tools was demonstrated by [Benn Jordan] which uses similar hardware but listens for bird calls rather than looking for the birds with a vision-based system.

Continue reading “A Bird Watching Assistant”

Expensive Batteries Hide Cheap Tricks

In our modern world full of planned obsolescence helping to fuel cycles of consumerism, the thing that really lets companies dial this up to the max is locked-down electronics and software. We all know the key players in this game whether it’s an automotive manufacturer, video game console producer, smart phone developer, or fruit-based computer company of choice, but there are some lesser known players desperately trying to make names for themselves in this arena too. Many power tool manufacturers like Milwaukee build sub-par battery packs that will wear out prematurely as [Tool Scientist] shows in this video.

Determining that these packs don’t actually balance their cells isn’t as straightforward as looking for leads going to the positive terminal of each. The microcontrollers running the electronics in these packs are hooked up, but it seems like it’s only to communicate status information about the batteries and not perform any balancing. [Tool Scientist] tested this hypothesis through a number of tests after purposefully adding an imbalance to a battery pack, first by monitoring i2c communications, measuring across a resistor expected to show a voltage drop during balancing, let a battery sit 21 days on a charger, and then performing a number of charge and discharge cycles. After all of that the imbalance was still there, leading to a conclusion that Milwaukee still doesn’t balance their battery packs.

Giving them the benefit of the doubt, it could be that most packs will be just fine after years without balancing, so the added cost of this feature isn’t worth it. This video was put out nearly a year ago, so it’s possible Milwaukee has made improvements since then. But a more realistic take, especially in a world dominated by subscription services and other methods of value extraction, is that Milwaukee is doing this so that users will end up having to buy more batteries. They already make user serviceability fairly difficult, so this would be in line with other actions they’ve taken. Or it could be chalked up to laziness, similar to the Nissan Leaf and its lack of active thermal management in its battery systems.

Thanks to [Polykit] for the tip!

Continue reading “Expensive Batteries Hide Cheap Tricks”

Saving A Rental Ebike From The Landfill

One of the hardest things about owning a classic car is finding replacement parts. Especially if the car is particularly old or rare, or if the parent company is now out of business, sometimes this can be literally impossible and a new part will have to be manufactured from scratch. The same is true of bicycles as well, and there are plenty of defunct bicycle manufacturers to choose from. [Berm Peak] found a couple old rental ebikes from a company that’s not in business anymore and set about trying to get them working again. (Video, embedded below.)

Of course, unlike many classic cars, ebikes are encumbered by proprietary electronics and software that are much harder to replace than most physical components. As a result, these bikes get most of their electronics pulled out and directly replaced. This bike also had a seized motor, so [Berm Peak] replaced it with another hub motor he had in his shop. Some of the other highlights in the build include a custom 3D-printed latching mechanism for the battery’s attachment point at the frame, a 3D printed bezel for the new display and control unit, and the reuse of some of the other fun parts of the bike like the front basket and integrated headlight.

There are a few reasons for putting so much work into a bike like this. For this specific bike at least, the underlying components are worth saving; the sturdy metal frame and belt drivetrain are robust and won’t need much maintenance in the long term. It also only cost around $500 in parts to build a bike that would take around $2,000 to purchase new, so there’s some economic incentive as well. And in general it’s more fun and better for the world to fix things like this up and get them running again rather than buying something new off the shelf. And while proprietary electronics like those found on this bike are ubiquitous in the ebike world, they’re not all completely closed-source.

Continue reading “Saving A Rental Ebike From The Landfill”

Kubernetes Cluster Goes Mobile In Pet Carrier

There’s been a bit of a virtualization revolution going on for the last decade or so, where tools like Docker and LXC have made it possible to quickly deploy server applications without worrying much about dependency issues. Of course as these tools got adopted we needed more tools to scale them easily. Enter Kubernetes, a container orchestration platform that normally herds fleets of microservices in sprawling cloud architectures, but it turns out it’s perfectly happy running on a tiny computer stuffed in a cat carrier.

This was a build for the recent Kubecon in Atlanta, and the project’s creator [Justin] wanted it to have an AI angle to it since the core compute in the backpack is an NVIDIA DGX Spark. When someone scans the QR code, the backpack takes a picture and then runs it through a two-node cluster on the Spark running a local AI model that stylizes the picture and sends it back to the user. Only the AI workload runs on the Spark; [Justin] also is using a LattePanda to handle most of everything else rather than host everything on the Spark.

To get power for the mobile cluster [Justin] is using a small power bank, and with that it gets around three hours of use before it needs to be recharged. Originally it was planned to work on the WiFi at the conference as well but this was unreliable and he switched to using a USB tether to his phone. It was a big hit with the conference goers though, with people using it around every ten minutes while he had it on his back. Of course you don’t need a fancy NVIDIA product to run a portable kubernetes cluster. You can always use a few old phones to run one as well.

Continue reading “Kubernetes Cluster Goes Mobile In Pet Carrier”

Casting Metal Tools With Kitchen Appliances

Perhaps the biggest hurdle to starting a home blacksmithing operating is the forge. There’s really no way around having a forge; somehow the metal has to get hot enough to work. Although we might be imagining huge charcoal- or gas-fired monstrosities, [Shake the Future] has figured out how to use an unmodified, standard microwave oven to get iron hot enough to melt and is using it in his latest video to cast real, working tools with it.

In the past, [Shake the Future] has made a few other things with this setup like an aluminum pencil with a graphite core. This time, though, he’s stepping up the complexity a bit with a working tool. He’s decided to build a miniature bench vice, which uses a screw to move the jaws. He didn’t cast the screw, instead using a standard size screw and nut, but did cast the two other parts of the vice. He first 3D prints the parts in order to make a mold that will withstand the high temperatures of the molten metal. With the mold made he can heat up the iron in the microwave and then pour it, and then with some finish work he has a working tool on his hands.

A microwave isn’t the only kitchen appliance [Shake the Future] has repurposed for his small metalworking shop. He also uses a standard air fryer in order to dry parts quickly. He works almost entirely from the balcony of his apartment so he needs to keep his neighbors in mind while working, and occasionally goes to a nearby parking garage when he has to do something noisy. It’s impressive to see what can be built in such a small space, though. For some of his other work be sure to check out how he makes the crucibles meant for his microwave.

Continue reading “Casting Metal Tools With Kitchen Appliances”

FPGA Brings Antique Processor To Life

For the retro gaming enthusiast, nothing beats original hardware. The feel of the controllers and the exact timing of the original, non-emulated software provide a certain experience that’s difficult or impossible to replicate otherwise. To that end, [bit-hack] wanted to play the original EGA, 16-color version of The Secret of Monkey Island in a way that faithfully recreated the original and came up with this FPGA-based PC with a real NEC V20 powering it all.

The early 90s-style build is based on a low-power version of the V20 called the V20HL which makes it much easier to interface with a modern 3.3 V FPGA compared to the original 5 V chip. It’s still an IBM XT compatible PC though, with the FPGA tying together the retro processor to a 1 MB RAM module, a micro SD slot that acts as a hard disk drive, a digital-to-analog audio converter, and of course the PS/2 keyboard and mouse and VGA port. The mouse was one of the bigger challenges for [bit-hack] as original XT PCs of this era would have used a serial port instead.

With a custom PCB housed in a acrylic case, [bit-hack] has a modern looking recreation of an XT PC running an original processor and capable of using all of the period-correct peripherals that would have been used to play Monkey Island when it was first released.

FPGAs enable a ton of retrocomputing projects across a wide swath of platforms, and if you’re looking to get started the MiSTer FPGA project is a great resource.

Continue reading “FPGA Brings Antique Processor To Life”

3D Printing A Piano Action

Part of the reason there are always free pianos on your digital classifieds listing of choice is that, at least economically speaking, a piano is less of a musical instrument and more of a complicated machine that can and will wear out (not to mention the physical difficulty of actually moving one). Once a piano reaches that point, whether through age, use, or neglect, at that point it’s to intents and purposes worthless. But still, they’re essentially just machines. [Toast] figured that, since 3D printers not only can print all kinds of other machines and musical instruments alike, he would take a stab at combining these two and made his own 3D printed piano.

A piano’s action is the mechanical linkage between the keys and the strings of the piano themselves. Over many hundreds of years this has developed into a complicated series of levers which not only rapidly strike strings when a key is pressed, but also mute the strings while the key is not being pressed and strike the strings in a way that the hammer won’t be pressed into the strings if the player leaves their finger on a key. Rather than try to recreate all of this in meticulous detail, [Toast] has swapped out the strings for a series of tubes which, unlike strings, do not much change their musical behavior if the hammer remains on the tube after being struck. This greatly simplifies the action (and cost) of his miniature piano.

The piano works by positioning hammers above these tubes, which strike downwards when a musician depresses the keys. Rubber bands return the hammers to their upright positions after the key is lifted. The instrument went through a few stages of design as well where [Toast] refined the size and shape of the tubes as well as improved the way by which the hammers are attached to the keys.

Is it still a piano if it has pipes instead of strings? Perhaps, but at the very least we can all agree that he’s built a working keyboard action capable of producing music, if not an outright definitionally-accurate piano. It’s an interesting build that we hope to see more iterations of in the future, if not to build a more functionally accurate 3D printed piano action then to see what is possible from a 3D printer in the piano space. Despite their complexity and weight, pianos are a fundamental and popular instrument in the Western music tradition and we’ve seen many interesting builds around them like this modern player piano built with a series of solenoids. Continue reading “3D Printing A Piano Action”