Lathe And Laser Team Up To Make Cutting Gear Teeth Easier

Fair warning: watching this hybrid manufacturing method for gear teeth may result in an uncontrollable urge to buy a fiber laser cutter. Hackaday isn’t responsible for any financial difficulties that may result.

With that out of the way, this is an interesting look into how traditional machining and desktop manufacturing methods can combine to make parts easier than either method alone. The part that [Paul] is trying to make is called a Hirth coupling, a term that you might not be familiar with (we weren’t) but you’ve likely seen and used. They’re essentially flat surfaces with gear teeth cut into them allowing the two halves of the coupling to nest together and lock firmly in a variety of relative radial positions. They’re commonly used on camera gear like tripods for adjustable control handles and tilt heads, in which case they’re called rosettes.

To make his rosettes, [Paul] started with a block of aluminum on the lathe, where the basic cylindrical shape of the coupling was created. At this point, forming the teeth in the face of each coupling half with traditional machining methods would have been tricky, either using a dividing head on a milling machine or letting a CNC mill have at it. Instead, he fixtured each half of the coupling to the bed of his 100 W fiber laser cutter to cut the teeth. The resulting teeth would probably not be suitable for power transmission; the surface finish was a bit rough, and the tooth gullet was a little too rounded. But for a rosette, this was perfectly acceptable, and probably a lot faster to produce than the alternative.

In case you’re curious as to what [Paul] needs these joints for, it’s a tablet stand for his exercise machine. Sound familiar? That’s because we recently covered his attempts to beef up 3D prints with a metal endoskeleton for the same project.

Continue reading “Lathe And Laser Team Up To Make Cutting Gear Teeth Easier”

Budget-Minded Synthetic Aperture Radar Takes To The Skies

Unless you work for the government or a large corporation, constrained designs are a fact of life. No matter what you’re building, there’s likely going to be a limit to the time, money, space, or materials you can work with. That’s good news, though, because constrained projects tend to be interesting projects, like this airborne polarimetric synthetic aperture radar.

If none of those terms make much sense to you, don’t worry too much. As [Henrik Forstén] explains, synthetic aperture radar is just a way to make a small radar antenna appear to be much larger, increasing its angular resolution. This is accomplished by moving the antenna across a relatively static target and doing some math to correlate the returned signal with the antenna position. We saw this with his earlier bicycle-mounted SAR.

For this project, [Henrik] shrunk the SAR set down small enough for a low-cost drone to carry. The build log is long and richly detailed and could serve as a design guide for practical radar construction. Component selection was critical, since [Henrik] wanted to use low-cost, easily available parts wherever possible. Still, there are some pretty fancy parts here, with a Zynq 7020 FPGA and a boatload of memory on the digital side of the custom PCB, and a host of specialized parts on the RF side.

The antennas are pretty cool, too; they’re stacked patch antennas made from standard FR4 PCBs, with barn-door feed horns fashioned from copper sheeting and slots positioned 90 to each other to provide switched horizontal and vertical polarization on both the receive and transmit sides. There are also a ton of details about how the radar set is integrated into the flight controller of the drone, as well as an interesting discussion on the autofocusing algorithm used to make up for the less-than-perfect positional accuracy of the system.

The resulting images are remarkably detailed, and almost appear to be visible light images thanks to the obvious shadows cast by large objects like trees and buildings. We’re especially taken by mapping all combinations of transmit and receive polarizations into a single RGB image; the result is ethereal.

It’s Always Pizza O’Clock With This AI-Powered Timepiece

Right up front, we’ll say that [likeablob]’s pizza-faced clock gives us mixed feelings about our AI-powered future. On the one hand, if that’s Stable Diffusion’s idea of what a pizza looks like, then it should be pretty easy to slip the virtual chains these algorithms no doubt have in store for us. Then again, if they do manage to snare us and this ends up on the menu, we’ll pray for a mercifully quick end to the suffering.

The idea is pretty simple; the clock’s face is an empty pizza pan that fills with pretend pizza as the day builds to noon, whereupon pizza is removed until midnight when the whole thing starts again. The pizza images are generated by a two-stage algorithm using Stable Diffusion 1.5, and tend to favor suspiciously uncooked whole basil sprigs along with weird pepperoni slices and Dali-esque globs of cheese. Everything runs on a Raspberry Pi Zero W, with the results displayed on a 4″ diameter LCD with an HDMI adapter. Alternatively, you can just hit the web app and have a pizza clock on your desktop. If pizza isn’t your thing, fear not — other food and non-food images are possible, limited only by Stable Diffusion’s apparently quite limited imagination.

As clocks go, this one is pretty unique. But we’re used to seeing unusual clocks around here, from another food-centric timepiece to a clock that knits.

Precision Reference Puts Interesting Part To Work

Interesting parts make for interesting projects, and this nifty precision voltage reference has some pretty cool parts, not to mention an interesting test jig.

The heart of [Gaurav Singh]’s voltage reference is an ADR1399, precision shunt reference from Analog Devices. The datasheet makes for pretty good reading and reveals that there’s a lot going on inside the TO-49 case, which looks unusually large thanks to a thick plastic coat. The insulation is needed for thermal stability for the heated Zener diode reference. The device also has a couple of op-amps built in, one that provides closed-loop voltage control and another that keeps the internal temperature at a toasty 95°C. The result is a reference that’s stable over a wide range of operating conditions.

[Gaurav]’s implementation maximizes this special part’s capabilities while making it convenient to use. The PCB has a precision linear regulator that accepts an input voltage from 16 V to 20 V, plus a boost converter that lets you power it from USB-C. The board itself is carefully designed to minimize thermal and mechanical stress, with the ADR1399 separated from the bulk of the board with wide slots. The first video below covers the design and construction of an earlier rev of the board.

One problem that [Gaurav] ran into with these boards was the need to age the reference with an extended period of operation. To aid in that, he built a modular test jig that completed PCBs can be snapped into for a few weeks of breaking in. The jigs attach to a PCB with pogo pins, which mate to test points and provide feedback on the aging process. See the second video for more details on that.

Continue reading “Precision Reference Puts Interesting Part To Work”

Hackaday Links Column Banner

Hackaday Links: February 9, 2025

January 9 ended up being a very expensive day for a Culver City, California man after he pleaded guilty to recklessly operating a drone during the height of the Pacific Palisades wildfire. We covered this story a bit when it happened (second item), which resulted in the drone striking and damaging the leading edge of a Canadian “Super Scooper” plane that was trying to fight the fire. Peter Tripp Akemann, 56, admitted to taking the opportunity to go to the top of a parking garage in Santa Monica and launching his drone to get a better view of the action to the northwest. Unfortunately, the drone got about 2,500 meters away, far beyond visual range and, as it turns out, directly in the path of the planes refilling their tanks by skimming along the waters off Malibu. The agreement between Akemann and federal prosecutors calls for a guilty plea along with full restitution to the government of Quebec, which owns the damaged plane, plus the costs of repair. Akemann needs to write a check for $65,169 plus perform 150 hours of community service related to the relief effort for the fire’s victims. Expensive, yes, but probably better than the year in federal prison such an offense could have earned him.

Continue reading “Hackaday Links: February 9, 2025”

Retrotechtacular: Point-of-Sale Through The Years

In days gone by, a common retail hack used by some of the less honorable of our peers was the price tag switcheroo. You’d find some item that you wanted from a store but couldn’t afford, search around a bit for another item with a more reasonable price, and carefully swap the little paper price tags. As long as you didn’t get greedy or have the bad luck of getting a cashier who knew the correct prices, you could get away with it — at least up until the storekeeper wised up and switched to anti-tamper price tags.

For better or for worse, those days are over. The retail point-of-sale (POS) experience has changed dramatically since the time when cashiers punched away at giant cash registers and clerks applied labels to the top of every can of lima beans in a box with a spiffy little gun. The growth and development of POS systems is the subject of [TanRu Nomad]’s expansive video history, and even if you remember the days when a cashier kerchunked your credit card through a machine to take an impression of your card in triplicate, you’ll probably learn something.

Continue reading “Retrotechtacular: Point-of-Sale Through The Years”

Split-Flap Clock Makes A Nice Side Quest In Larger Project

Sometimes projects spawn related projects that take on a life of their own. That’s OK, especially when the main project is large and complex, In that case, side-quest projects provide a deliverable that can help keep the momentum of the whole project going. The mojo must flow, after all.

That seems to be what’s going on with this beautiful split-flap clock build by [Erich Styger]. It’s part of a much larger effort which will eventually see 64 separate split-flap units chained together. This project has been going on for a while; we first featured it back in 2022 when it was more of a prototype. Each unit is scratch-built, using laser-cut fiberboard for parts like the spool and frame, thin PVC stock for the flip cards, and CNC-cut vinyl for the letters and numbers. Each unit is powered by its own stepper motor.

To turn four of these displays into a clock, [Erich] milled up a very nice enclosure from beech. From the outside it’s very clean and simple, almost like something from Ikea, but the inside face of the enclosure is quite complex. [Erich] had to mill a lot of nooks and crannies into the wood to provide mounting space and clearance for the split-flap mechanism, plus a thinned-down area at the top of each window to serve as a stop for the flaps. The four displays are controlled by a single controller board, which houses an NXP K22FN512 microcontroller along with four stepper drivers and interfaces for the Hall-effect sensors needed to home each display. There’s also an RS-485 interface that lets the controllers daisy-chain together, which is how the big 64-character display will be controlled.

We’re looking forward to that, but in the meantime, enjoy the soft but pleasant flappy goodness of the clock in the brief video below.

Continue reading “Split-Flap Clock Makes A Nice Side Quest In Larger Project”