Accessibility Keyboard Is Modular And Practical

We don’t have many details from [dariocose] about his K-Ability Dev Kit yet, but there are enough clues on his HackadayPrize2020 entry that we can tease out the critical points. The plan is to supply a control module with Bluetooth HID capability to act as a mouse and keyboard. It will plug into a socket on user-specific boards. Each style will be suited to a patient with a neuromuscular disease and will allow them to interact with computers in a way that suits their needs. For example, if someone lacks fine motor control, they may need large buttons, while someone with weak muscles may need pads close to one another. From the video’s looks below, the prototype boards aren’t anything fancier than cardboard and wire. Developing the best device doesn’t mean a dozen iterative prints or wasted laser-cut acrylic sheets.

Example code supports three mouse movements, left, right, and down, but there are plans to develop a tool to reprogram them. Given the name and prominent LCD, we suspect there will be keyboard support in the future. Processing and Bluetooth rest on the capable shoulders of an ESP32, which also supports touch sensing, so customized pads can respond to a wispy graze or a blunt fist.

We’re not short on customized keyboards that range from glorious elements of comfort to befuddling tools of typing.

Continue reading “Accessibility Keyboard Is Modular And Practical”

Ultra-Mobile Little Robot Will Climb The Walls

Can it crawl? Can it climb? Can it roll? Can it skate? Can it draw? Naminukas by [Mykolas Juraitis] can do all of those things, and it is the size of a winter boot. Roving robots generally fall into one locomotion category, and the fanciest are amphibious. We categorize this one as transforming between three modes.

The first mode is like an inch-worm and a robot arm. Using a vacuum cup at the hub of each wheel, it sticks one end to the ground then heaves itself in the direction it wants to go and repeats. Its second form is a two-wheel balancing robot, which is the fastest configuration, and it can even carry things on its suckers. For the finale, it can hybridize all the tricks and use a camera dolly like a skateboard. One end sticks to the dolly, and the other is a propulsion wheel.

Naminukas is not just about scooting around the floor, because it can use tools with enough dexterity to write legibly on a whiteboard, climb walls, and even move around the ceiling. If these become sentient, there will be no place to hide, except a room with shag carpet, and is that any way to live?

We enjoy multi-terrain vehicles from soaring seaplanes to tidal tanks.

Continue reading “Ultra-Mobile Little Robot Will Climb The Walls”

Approaching The Drop Location: Seeds Away!

Arbor Day is a holiday many countries dedicate to planting trees, but with the steady encroachment of climate change, we need to maximize our time. Dronecoria doesn’t just plant a tree; it sows “hectares in minutes.” A hectare is 10,000 square meters or 2.471 acres. These aren’t the drones you’re looking for if you intend a weekend of gardening, this is in the scope of repopulating a forest with trees or reinvigorating a park with wildflowers. The seed balls in the hopper are 10kg of native seeds coupled with beneficial microorganisms to help the chances of each drop.

The drone’s body is laser cut from what looks like baltic birch plywood. The vector files are available in Illustrator (.ai) and CAD (.dxf) formats released under Creative Commons BY-SA, so give credit if you redistribute or remix it. In the 3D realm, you’ll need a SeedShutter and SeedDisperser, and both models are available in STL format.

We have other non-traditional seed spreading methods like canons, but it is a big job, and if you’ve build something to pitch in, drop us a tip!

Cerebral Palsy Tool Assistant

We all deserve to create. Some people seem to have the muses hidden in their pocket, but everyone benefits when they express themselves in their chose art form. Each of us has tools, from Dremels to paintbrushes, and many folks here build their own implements. Even if we don’t have our macro-enabled mechanical keyboard or a dual-extrusion printer, we can make due. But what if you couldn’t operate your drill, or mouse, or even a pencil? To us, that would be excruciating and is the reality for some. [Laura Roth] and [Christopher Sweeney] are art teachers designing a tool holder for their students with cerebral palsy so that they can express themselves independently.

On either side of this banner image, you can see pencil drawings from [Sara], who has spastic cerebral palsy. She made these drawings while wearing the tool holder modeled after her hand. Now, that design serves other students and is part of the 2020 Hackaday Prize. The tool holder wraps around the wrist like a wide bracelet. Ribbing keeps its shape, and a tube accepts cylindrical objects, like pencils, styluses, and paintbrushes.The result is that the tip of the pencil is not far from where it would have been if held in the hand, but this sidesteps issues with grip and fine control in hands and fingers.

The print is available as an STL and should be printed with flexible filament to ensure it’s comfortable to wear. Be mindful of digital styluses which may need something conductive between the barrel and user.

Hackers are familiar with the challenges of cerebral palsy, and we’ve enjoyed seeing a variety of solutions over the years like door openers, camera gimbals, and just being altogether supportive.

Fog-Free Mask Hack Solves Mask Versus Glasses Conundrum With Superb Seal

If you have worn a mask and glasses together for more than a quarter of a second, you are probably annoyed that we don’t have a magical solution for foggy lenses. Moisture-laden air is also a good indicator of where unfiltered air is escaping. Most masks have some flexible metal across the nose bridge that is supposed to seal the top, but it is woefully inadequate. The Badger Seal by [David Rothamer] and [Scott Sanders] from the University of Wisconsin-Madison College of Engineering is free to copy during the COVID-19 pandemic, even commercially. It works by running an elastic cord below the jaw and a formable wire over the nose to encourage contact all around both mouth and nose.

You can build your own in three ways. Each configuration is uniquely suited to a different situation. The first design is the easiest to make and should work for most people. The second is best for folks who need a better seal on the lower half of their face, like someone sporting a beard. It can also have ear loops, and that means your 3D printed ear savers have another use. The Madison campus of the University of Wisconsin also has fun with lock cracking and graphene experiments.
Continue reading “Fog-Free Mask Hack Solves Mask Versus Glasses Conundrum With Superb Seal”

Pause Your Tunes When It Is Time To Listen Up!

“Sorry. I had music playing. Would you say that again?” If we had a money-unit every time someone tried talking to us while we were wearing headphones, we could afford a super-nice pair. For an Embedded C class, [extremerockets] built Listen Up!, a cutoff switch that pauses your music when someone wants your attention.

The idea was born while sheltering in place with his daughter, who likes loud music, but he does not want to holler to get her attention. Rather than deny her some auditory privacy, Listen Up! samples the ambient noise level, listens for a sustained rise in amplitude, like speech, and sends a pause signal to the phone. Someday, there may be an option to route the microphone’s audio into the headphones, but for now there is a text-to-speech module for verbalizing character strings. It might be a bit jarring to hear a call to dinner in the middle of a guitar riff, but we don’t like missing dinner either, so we’re with [extremerockets] on this one.

We don’t really need lots of money to get fun headphones, and we are not afraid of making our own.

Karting Hands-Free

Some of us have computer mice with more buttons than we have fingers, resolution tracking finer than a naked eye can discern, and forced-air vents. All these features presuppose one thing; the user has a functioning hand. [Federico Runco] knows that amyotrophic lateral sclerosis, ALS, or Lou Gehrig’s disease, will rob a person of their ability to use standard computer inputs, or the joystick on a motorized wheelchair. He is building EyesDrive for the 2020 Hackaday Prize, to restore that mobility to ALS patients. There are already some solutions, but this one focuses on a short bill of materials.

Existing systems are expensive and often track pupil location, which returns precise data, but EyesDrive only discerns, left, right, and resting. For these, we need three non-invasive electrodes, a custom circuit board with amplifiers, signal processing circuits, and a microcontroller. He includes a Bluetooth socket on the custom PCBs, which is the primary communication method. In the video below he steers a virtual kart around a knotty course to prove that his system is up to the task of an urban wheelchair.

EyesDrive by [Federico Runco] should not be confused with the HackadayPrize2015 winner, Eyedrivomatic, lead by two remarkable hackers, Steve Evans and Patrick Joyce.

Continue reading “Karting Hands-Free”