Sonar With Python And Conference Call Hardware

conference-call-sonar

[Jason] just tipped us off about his recent experiment, in which he creates a sonar system using standard audio equipment and a custom Python program. In case some of our readers don’t already know it, Sonar is a technique that uses sound propagation to detect objects on or under the surface of the water. It is commonly used in submarines and boats for navigation. [Jason]’s project uses active sonar, which consists in sending short audio bursts (chirps) and listening for echoes. The longer it takes for the echo to return, the further the object is. Though his proof of concept is not used underwater, that may change if he continues the project.

The audio editing software Audacity was used to make a fast frequency changing chirp, along with PyAudio libraries for the main Python program. Exact time of arrival is detected by correlating the microphone output with the transmitted signal. Given that [Jason] uses audible frequencies, we think that the final result shown in the video embedded below is quite nice.
Continue reading “Sonar With Python And Conference Call Hardware”

NESPoise – A Nice Looking NES Clone

[Dave] tipped us about the latest project he just finished: a posable, desktop NES clone arcade machine. This idea came to be when its creator gathered a few bits and pieces he had lying around: an NES Retro Entertainment System (Retrobit RES, found for less than $25) and an arcade stick with its buttons. [Dave] then bought a 7″ car DVD screen (less than $40) and started a first standard arcade-looking design with OpenSCAD. As the first draft was relatively boring, he let it mature for a bit until he got another idea, shown in the picture above.

The final result is made of 3D printed PLA and varnished luaun plywood which gives the console a VCS style retro look. Many hours were required to 3D print the different parts using a Makerbot Replicator 2. [Dave] disassembled his Retrobit RES to layout its parts inside the case and  also replaced the original voltage regulator with a 7805 on a big heatsink. This may be one of the best ‘nintendo’ hacks we have received over the years, but there have been others that also take cartridges.

Developed On Hackaday: First Version Of The Hardware

mooltipass-schematic-featured

The Hackaday writers and readers are currently working hand-in-hand on an offline password keeper, the mooltipass (click to see the project description). 

Next in our Developed on Hackaday series, we present the first version of our schematics. There’s already been a lot of discussions going on in our dedicated Google group, mainly about the project’s basic functionality. Because our firmware developers wanted to get to work, we decided to send the first version of our hardware into production a few days ago. Before going through the schematics, let’s review the required list of the mooltipass’s core components:

  • an easily-readable screen
  • a read-protected smart-card
  • large flash memory to store the encrypted passwords
  • an Arduino-compatible microcontroller with USB connectivity

We’ve been drowning in component suggestions from motivated hobbyists, so we figured we’d make the mooltipass v1 as simple as possible and then move from there. Given this device is developed on Hackaday, we also wanted future users to modify it, building completely new projects based around these main components. Keep reading for our schematics…

Continue reading “Developed On Hackaday: First Version Of The Hardware”

Disrupting Advertisement Agency Workers With Electric Shocks

We hope this project will make you laugh as much as we did. For 4 hours, some Australian advertising executives agreed to be subjected to Electric Muscle Stimulation (EMS) controlled by people from all over the globe watching their reaction over the Internet. The public could disrupt their day with a click of a mouse. The user simply needed to go online, choose a live stream, click the ‘Disrupt’ button and watch as the EMS instantaneously zapped the volunteers. For each ‘disruption’, the company donated $1 to a local community.

The EMS hardware was designed to deliver up to 60V pulses and controlled using the MIDI protocol. The platform is powered by 8 AA batteries and receives zapping commands via UDP. Unfortunately, the resources can’t be found on the project’s webpage, but you can still have a look at the two videos embedded after the break. The total amount donated during this experiment was $5500!

Continue reading “Disrupting Advertisement Agency Workers With Electric Shocks”

Stylish OLED Watch Uses Accelerometer Instead Of Buttons

A few days ago [Andrew] contacted us to offer his help for the design of the mooltipass project case. While introducing himself, he casually mentioned his OLED watch that you can see above.

The watch is based on the low-power MSP430F microcontroller from Texas Instruments. It can consume as little as 1.5uA while maintaining a real-time clock and monitoring interrupts. It also uses ferroelectric RAM, which doesn’t need any power to retain its memory contents. That means there’s no need to set the time again if you remove the CR2016 battery that powers the watch.

[Andrew] chose an 0.96″ OLED display that only consumes up to 7mA. He also included an accelerometer that allows him to interact with the watch through its single and double tap detecting feature. He modeled his PCB using EagleCAD and the whole assembly using Sketchup. Most of the components were soldered in his reflow (toaster) oven. The final result is a mere 8.8mm thick and looks very professional in our opinion.

Developed On Hackaday: Setting Up The Project’s Infrastructure

2013-12_Developed_on_Hackaday

We’re pretty sure that most of our readers already know it by now, but we’ll tell you anyway: the Hackaday community (writers and readers) is currently developing an offline password keeper. In the first post of our first DoH series, we introduced the project and called for contributors. In the comments section, we received very interesting feedback as well as many feature suggestions that we detailed in our second write-up. Finally, we organized a poll that allowed everyone to vote on the project’s name.

The results came in: the project’s name will be mooltipass. We originally had thought of ‘multipass’ but [asheets] informed us that Apple and Canon had both applied for this trademark. [Omegacs] then suggested ‘mooltipass’ as an alternative, which we loved even more. A few days ago we set up a google group which is already very active.

An often under-estimated side of a community driven project is its infrastructure and management. (How) can you manage dozens of motivated individuals from all over the globe to work on a common project? How can you keep the community informed of its latest developments?

Continue reading “Developed On Hackaday: Setting Up The Project’s Infrastructure”

Modifying A PS4 Dualshock4 Controller To Use A Mouse And Keyboard

[Mori] wanted to use his keyboard and mouse to play his favorite games on the PS4, so he decided to modify his Dualshock4 controller to feed it custom input signals.

In the heart of this build is an STM32F407 discovery board, which is connected to a USB hub. To perform this hack, [Mori] tore open the Dualshock4 controller to find the PCB traces coming from the sticks and buttons. He then used the STM32F407 and 2 Digital to Analog Converters (DACs) to create similar signals. Unfortunately for us, [Mori] only released the schematics but not the firmware. Our guess is that he had to configure the microcontroller as a USB host, enumerate the mouse/keyboard, parse the HID reports and feed the controller the corresponding inputs.

We embedded a video of the hack in action after the break. If you own a PS4, you may also want to see how to disable the Dualshock LEDs.

Continue reading “Modifying A PS4 Dualshock4 Controller To Use A Mouse And Keyboard”