Cheetah Robot Can Run Down Even The Fastest Of Us

It’s a blur, but you really don’t want to seen this thing coming for you anyway. It’s the latest look at what the folks at Boston Dynamics have been working on under a DARPA contract. They call it the Cheetah robot as it’s the fastest four-legged bot ever developed. The clip after the break shows it breaking the world record over 100 meters… for a human. This isn’t really legitimate since the run is done on a treadmill and the robot is tethered. But it’s still impressive scary.

The Cheetah is a relative of BigDog, another Boston Dynamics robot which we’ve seen several times in the past. BigDog specializes in lifting heavy loads and traversing rough terrain. We don’t think it will be too long before both traits can be “bred” into one device. A lot of times when we feature these robots there are comments about how they invoke images from The Terminator movies. For us this is more along [Michael Bay’s] vision of robots from the Transformers series. It certainly not small enough or fast enough to be seen as an early version of the Rat Thing.

Continue reading “Cheetah Robot Can Run Down Even The Fastest Of Us”

Scratch-built RFID Reader

We never bought an RFID reader because it seems too simple to be all that much fun. But [Abdullah] really caught our eye with his latest project. It’s an RFID reader built from discrete parts, and that’s an adventure we can get behind!

His write-up dives right into the theory of the device. He wrapped his own coil, which measure about one microhenry, then shares an equation used to calculate the appropriate capacitor pair for it. This is fed by a 125 kHz oscillator and works as the most basic reader. In practice this needs more components for rock-solid operation and he quickly moves to a marginally more complicated circuit which still does exactly the same thing.

He is now able to detect RFID tag data by reading this circuit with an oscilloscope. But the signal is very very weak. The rest of the post focuses on how to best utilize an OpAmp to increase signal quality and on/off time.

If you’re looking to recreate his reader [Abdullah] included a Kicad schematic and board layout.

Adding EPaper Navigation Data To A Sailboat

[Mike Holden] has been on the hunt for a display that is easy to read in bright sunlight. He wants to use it to read out navigational data on his sail boat. The best option is an ePaper display. He managed to build a system that will feed updating NMEA 0183 data to a Nook Simple Touch.

NMEA 0183 is a protocol that governs data from marine navigational equipment. The most obvious is GPS, but there are a lot of possibilities like sonar, a gyrocompass, and an autopilot. To get things rolling he wrote an Arduino sketch which generates dummy packets using the standard. This let him develop and test the system without being near any of the real equipment. The heart of the build is a WiFi router. It pulls in the data over a USB port using an RS232 to USB converter cable. A Python script parses the data and generates a webpage which refreshes the data every second. This is loaded using Opera browser on the Nook

Check out the video after the break to see a demo of the system.

Continue reading “Adding EPaper Navigation Data To A Sailboat”

Electronic Beer Pong Removes Beer From The Equation

You can take the guy out of the frat house, but you can’t take the frat house out of the guy. [Evan Flint] proves this with his incessant need to have a beer pong game at all of his parties. But now that he’s growing up, and living in nicer places, he doesn’t necessarily want to have the oft-messy game in his home. So he found an electronic solution to his problem. Electropong is like an electronic dart board for playing beer pong. You won’t find beer in the cups, but you’ll still find plenty of fun.

The game includes the triangle of cups that makes up a traditional playing area. In the bottom of each cup is an RGB LED that will keep track of each player’s hits by lighting the cup in that team’s color. Illuminated buttons provide a way to control the game, with an LED marquee to read out the score.

[Evan] mentions some difficulty in recreating the physics of a cup full of beer. He says he overcame the challenge, but alas, there are no details on how. We’ve asked him to update his post so check back for more info.

ProtoSynth, The Prototyping Synthesizer

This project isn’t really a prototype, but a tool for prototyping. [Tymkrs] came up with a unique way to build this synthesizer prototyping tool. They actually patched into the underside of the breadboards in order to keep all of the permanent bits nice and tidy.

In the clip after the break you’ll see all of the build photos that lead up to this point. After cutting out and assembling the wooden pieces for the case they grab a soldering iron and get to work. Two octaves worth of keys were pulled out of an electric keyboard. Ribbon cable is soldered onto each key’s electrical connection, with an SIL pin header as a connector. This mates with another ribbon cable with a SIL socket on one end, and an IDC connector on the other. The real trick is getting that IDC connected to the breadboard. They cut back the adhesive tape on the underside of the board and soldered a surface mount pin header onto it. This way the inputs from the keys, as well as a few 1/4″ jacks from the back of the case are always available in a tidy way on the breadboards. The video goes on to show preliminary synthesizer work on the device.

Continue reading “ProtoSynth, The Prototyping Synthesizer”

2012 Open 7400 Logic Competition

The Open 7400 Logic Competition is being held again this year. Start thinking about your entries, they’ll need to be finished and submitted by October 31st. As motivation, Digilent has put up two of their Analog Discovery kits as prizes. They can be used as a dual channel oscilloscope, function generator, or 16-channel logic analyzer. Last year was the first time the competition was held. As hype for the event built, more and more prize sponsors signed on and we hope to see the same thing happen this year.

Your entry can be just about anything as long as you show your schematic, explain the project, and use logic. It can be 7400 TTL, 4000 CMOS, discrete gates, or even a CPLD. Last year’s entries spanned a wide range of themes from LED blinkers, to unorthodox 74xx chip hacking, to boards packed full of chips. Good luck and don’t forget to tip us off about your work!

[Thanks Adrian]

DIY ARM Prototyping Board

We’re impressed by the ARM prototyping board which [Danjovic] is showing off. He proves that in this day of ever shrinking packages it’s still possible to make your own development tools with protoboard and a soldering iron.

To tell you the truth, if he had designed and etched his own board we probably wouldn’t have featured it. But he didn’t need to spend time on the layout, etching, and reflow. Instead it’s just some enamel wire and a lot of patience. The patience is because the NXP ARM Cortex-M0 chip comes in a HVQFN package. We’re not entirely sure about the HV part (the package alphabet was not entirely clear on this) but QFN means Quad Flat No-Lead. That means no legs on the chip. So [Danjovic] glued it upside down and soldered point-to-point to break out all of the pins.

The top side of the board has a bootloader button, reset button, power regulation, and a crystal oscillator. He doesn’t mention what bootloader he’s using, but a Nokia USB cable gives him the connectivity to push his programs onto the chip.