Versaloon Ported To STM8 And STM32 Discovery Boards

[Bingo] did some work porting Versaloon for STM8 and STM32 discovery boards. Versaloon is a multiple-architecture programmer that we saw a few weeks back. At its center is an STM32 microprocessor, which greatly simplifies the work necessary to use the two discovery boards instead. Flashing the firmware to the boards will zap the ST-link firmware and [Bingo] doesn’t know of a way to restore that so be warned. This hack is still pretty fresh off the bench, but so far it looks like vsprog and OpenOCD both work just fine with the new hardware.

10 µm Scanning Electron Microscope From Vidicon Tube

[Segelfam] built his own scanning electron microscope. He based the machine around an old Vidicon tube, a video recording technology that was used in NASA’s unmanned space probes prior the Galileo probe in the late 1970’s. We struggle a bit with the machine translation of [Segelfam’s] original build log, but it seems that he filled the tube with helium in order to convert it for use as a microscope. But don’t worry, if you’re interested in this hack the information is all there – between the forum thread and build log – it’s just a matter of putting it all together to fill in the details.

In case you were wondering, the image to the upper right has been colored using Photoshop; the rest are straight from the SEM.

[Thanks Jerry]

Going Cellular With Your Arduino Projects

You can add a huge measure of extensibiltiy to a project by using a cellular connection. Anywhere the device can get service you can interact with it. In the past this has been a pretty deep slog through datasheets to get everything working, but this tutorial will show the basics of interacting with phone calls and text messages. It’s the 26th installment of what is becoming and mammoth Arduino series, and the first one in a set that works with the SM5100B cellular shield.

We love the words of warning at the top of the article which mention that a bit of bad code in your sketch could end up sending out a barrage of text messages, potentially costing you a bundle. But there’s plenty of details and if you follow along each step of the way we think you’ll come out fairly confident that you know what you’re doing. Just promise us that you won’t go out and steal SIM cards to use with your next project. Find part two of the tutorial here and keep your eyes open for future installments.

Steampunk CD Player

This custom CD-player enclosure may not be your style, but you can’t deny that the fabrication techniques are top-notch (translated). This starts with a portable CD player and a set of amplified speakers. A brass plate serves as the base for the electronics, with the CD player internals mounted from the underside. The brass dome that covers the spinning disk also started as a sheet of metal, with quite a bit of work (translated) going into shaping and smoothing to achieve these results. The base and speaker boxes exhibit some fine woodworking, and there’s even additional electronics for lights, control buttons, and to drive the two analog meters. A lot of thought went into each component of this build and that’s how you put together a masterpiece.

[Thanks Polossatik]

Analog Computer Does Math

This analog computer can multiply, divide, square numbers, and find square roots. It has a maximum result of ten billion with an average precision of 2-3%. [Miroslav’s] build recreates something he saw in a Popular Electronics magazine. It uses a resistor network made up of three potentiometers with a digital multimeter is an integral part of the machine. To multiply a number you set the needles on the first two knobs to the numbers on which you are operating. To find the result turn the third knob until the multimeter has been zeroed out and read the value that knob is pointing to. It seems much more simple than some of the discrete logic computers we’ve seen, yet it’s just as interesting.

Touch Sensors: Overview, Theory, And Construction

This collection of touch sensor information should be of interest to anyone who liked the simple touch sensor post from Thursday. That was a resistive touch sensor and is covered in detail along with AC hum sensors that trigger based on induced current from power lines around you, and capacitive touch switches like we’ve seen in past hacks. Each different concept is discussed and clearly illustrated like the slide above. [Giorgos Lazaridis] has also put together individual posts that build and demonstrate the circuits. We’ve embedded his resistive sensor demo video after the break and linked to all three example circuits.

Continue reading “Touch Sensors: Overview, Theory, And Construction”

The Future Of Cyberattacks

[Dino A. Dai Zovi] gave a talk in the earlier part of 2010 where he shares his thoughts on the future of malicious exploits. You can watch it on Ustream and he’s also posted a set of slides (PDF) that goes along with it. We find the 48 minute video to be quite interested. Instead of going into mundane detail, he covers the broader picture; what has been done in the past, what will happen in the future, and how are we currently ill-equipped to respond to future threats? That last question is covered throughout the video, but seems to come back to the concept that we are stuck in a rut of terminology and past practice that is impeding our ability to innovate security strategies at the same rate that the bad guys are coming up with the next nasty thing to come down the pipeline.